• Title/Summary/Keyword: Thermostatic

Search Result 49, Processing Time 0.024 seconds

Application and Analysis of Rhizopus oryzae Mycelia Extending Characteristic in Solid-state Fermentation for Producing Glucoamylase

  • Tang, Xianghua;Luo, Tianbao;Li, Xue;Yang, Huanhuan;Yang, Yunjuan;Li, Junjun;Xu, Bo;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1865-1875
    • /
    • 2018
  • Enhanced application of solid-state fermentation (SSF) in industrial production and the influence of SSF of Rhizopus K1 on glucoamylase productivity were analyzed using the flat band method. A growth model was implemented through SSF of Rhizopus K1 in this experiment, and spectrophotometric method was used to determine glucoamylase activity. Results showed that in bran and potato culture medium with 70% moisture in a loose state, ${\mu}$ of mycelium reached to $0.15h^{-1}$ after 45 h of culture in a thermostatic water bath incubator at $30^{\circ}C$. Under a low-magnification microscope, mycelial cells appeared uniform, bulky with numerous branches, and were not easily ruptured. The generated glucoamylase activity reached to 55 U/g (dry basis). This study has good utilization value for glucoamylase production by Rhizopus in SSF.

Convergence research on the possibility of development of oral care products using the anti-plaque activity of natural essential oils against Streptococcus mutans (천연에센셜오일의 Streptococcus mutans에 의한 치석형성 억제 활성을 이용한 구강관리제품 개발 가능성에 대한 융합연구)

  • Kim, Minhyung;Lee, So-Young;Min, Hee-Hong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.149-154
    • /
    • 2018
  • This article intended to examine the anti-plaque activity of 4 essential oils of Lavender, Tea tree, Eucalyptus, Lemongrass against Streptococcus mutans. In the results of measuring the anti-plaque effect against Streptococcus mutans, Minimum anti-adhesive concentration of Lavender oil was 1.0% and that of Tea tree, Eucalyptus, lemongrass essential oils was 0.5 %. Also, it was confirmed that the essential oils have the effect of inhibiting acid generation by Streptococcus mutans. It was confirmed that pH of the concentration was lowered by the acid generation under the MAC by measuring pH of the solution after incubating Streptococcus mutans and the essential oils in the thermostatic bath varying their concentration. From these results, the essential oils, particularly, Tea tree, Eucalyptus, Lemongrass essential oils are the natural material inhibiting the plaque generation and the potential that they can be used to develop the oral care products was confirmed.

A Basic Study on Efficient Acrylic Plate Light Transmission Road Machining (효율적인 아크릴판 광전송로 가공에 관한 기초 연구)

  • Han, Su-Won;Hong, Jun-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2022
  • This paper proposes a method to process the shape of an optical transmission road and attempts to determine the most suitable single processing method for an acrylic plate optical transmission road. In addition, by manufacturing an automatic pattern processing device to generate certain shapes on the acrylic plate at regular intervals, and measuring the illuminance of the patterned acrylic plate optical transmission road, the measured illuminance was confirmed to fall under the KS illuminance values presented in Table 1. In conclusion, when an incident light of approximately 20,000 lx is applied, the transmission illumination is approximately 200 lx, which represents a transmission rate of approximately 1% for incident light and corresponds to the KS illumination criterion F. Additionally, the right-angle triangular pyramid base size (A) processed at a temperature of 350 ℃ for one second was 2 mm, exhibiting the largest transmission illumination of 280 lx. When the transparent acrylic plate was set to a constant size of 1.6 mm at the bottom of the right-angle triangular pyramid, the fastest response occurred at a processing tip temperature of 350 ℃ (0.04 s). On the other hand, it took 10 s to process the size of the bottom of the right-angled triangular pyramid at a temperature of 200 ℃ to 1.6 mm, and it was confirmed that the optical transmission efficiency was significantly reduced because of the burr that occurred at this time.

COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS (카복실레이트계 시멘트의 접착력에 관한 비교 연구)

  • Lee, Han-Moo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

Influence of Filling Density in the Positive Active-material on the Cycle-life Performance of the Tubular Type Gelled Valve Regulated Lead Acid Batteries (튜브식 겔형 납축전지에 있어서 활물질 밀도에 따른 싸이클 수명 특성)

  • Yoon, Youn-Saup;Kim, Byung-Kwan;Lee, Soo;Kim, Kyu-Tea
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.415-418
    • /
    • 1999
  • The characteristics of VRLA (valve regulated Iead-acid) battery with the tubular positive plate and gel type electrolyte were examined as a function of active material filling density. The filling density of positive plate was 3.2 g/mL, 3.4 g/mL, and 3.6 g/mL, respectively. These VRLA batteries were cycled with 100% DOD (depth of discharge) at the $C_5/5$ rate, followed by IU-type recharge with $I_{max}=0.2C_{10}/10$ and a final voltage V=2.40 V/cell. The test was performed in a thermostatic room at $25{\pm}1^{\circ}C$. The result indicated that the initial capacity was independent of active material filling density, i.e., the highest initial capacity was 3.4 g/mL of filling density and the lowest was 3.6 g/mL. On aspect of the cycle-life performance of the VRLA battery, the filling density of 3.6 g/mL was similar to that of 3.4 g/mL in the positive plate, and both were higher than that of 3.2 g/mL. Water-loss and degradation of the VRLA battery were decreased according to an increase of the filling density in the positive plate. The optimum filling density of the active material was 3.4~3.6 g/mL.

  • PDF

A Study on the Spontaneous Ignition Characteristics of Wood Pellets related to Change in Flow Rate (공기유량의 변화에 대한 우드펠릿의 자연발화 특성에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Uses of fossil fuels like coal and oil increases with industrial development, and problems like abnormal climate come up as greenhouse gas increases. Accordingly, studies are actively conducted on eco-friendly renewable energy as a replacement for the main resources, and especially, wood pellets with high thermal efficiency are in the limelight as an alternative fuel in thermal power stations and gas boilers. However, despite a constant increase in their usage, few studies are conducted on their risks like fire and spontaneous combustion. Thus, this study found the auto-ignition temperature and critical ignition temperature of wood pellets with a change in flow rate in a thermostatic bath, using a sample vessel with 20 cm in length, 20 cm in height and 14 cm in thickness to predict their ignition characteristics. Consequently, at the flow rate of 0 NL/min, as the core temperature of the sample increased to higher than the ambient temperature, they ignited at $153^{\circ}C$, when the critical ignition temperature was $152.5^{\circ}C$. At the flow rates of 0.5 NL/min and 1.0 NL/min, it was $149.5^{\circ}C$, and at the flow rate of 1.5 NL/min, it was $147.5^{\circ}C$. Consequently, at the same storage, the more the flow rate, the lower the critical ignition temperature became.

A Study on Measurements of Autoignition and Activation Energy of Superabsorbent Polymers (고흡수성 중합체의 자연발화와 활성화에너지 측정에 관한 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.292-304
    • /
    • 2023
  • Purpose: This study was conducted to obtain experimental data for the establishment of preventive measures against fire, as large and small fire accidents occur at production and storage sites of superabsorbent polymers developed for the convenience of daily life. Method: The sample container was fixed at 0.2m in both length and width, and was shaped into a rectangular cuboid with heights of 3cm, 5cm, 7cm, and 14cm to access an infinite flat plane. The sample container was fixed in the center of a thermostatic bath that was heated to a predetermined temperature according to a preset temperature control program. If the central temperature of the sample rose more than 20℃ above the set temperature, it was determined to have 'ignited', and if it remained similar to the set temperature, it was determined to have 'unignited'. Result: The critical autoignition temperature was calculated to be 212.5℃ for a sample container with a height of 3cm, 202.5℃ for 5cm, 192.5℃ for 7cm, and 177.5℃ for 14cm. The ignition induction time to reach the highest temperature was approximately 42hours for 3cm, 91hours for 5cm, 151hours for 7cm, and 300hours for 14cm. Conclusion:① As the size of the sample container increased, the autoignition temperature decreased and the ignition induction time to reach the highest temperature increased. ② The apparent activation energy was calculated to be 39.30kcal/mol, with a correlation of 99.5%.

Experimental Study on Autoignition of Superabsorbent Polymers (고흡수성 중합물질의 자연발화에 대한 실험적 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.280-291
    • /
    • 2023
  • Purpose: As fire accidents happen at the production and storage sites of superabsorbent polymers for convenience of daily life, an experimental study was conducted to secure basic data to establish practical preventive measures against them. Method: The sample container (20cm width × 20cm length) was made into a rectangular cuboid with the heights of 3cm, 5cm, 7cm, and 14cm, respectively, to allow access to the infinite flat plane. The front and back of the container were covered with a 300-mesh stainless steel mesh for one-dimensional heat transfer. The sample container was placed in the center of the thermostatic bath, which was heated to a predetermined temperature by setting the thermostat program in advance, and it was determined to be 'ignited' when the central temperature of the sample rose by more than 20℃ above the set temperature, and "unignited" when it was maintained at an approximate value of the set temperature. Result: The critical autoignition temperature was calculated to be 217.5℃ when the height of the sample container was 3 cm, 212.5℃ when it was 5 cm, 202.5℃ when it was 7cm, and 187.5℃ when it was 14cm. The ignition induction time to reach the maximum temperature was 34hours for 3cm, 76hours for 5cm, 143hours for 7cm, and 318hours for 14cm. Conclusion: ① As the size of the container increased, the autoignition temperature decreased and the induction time to reach the maximum temperature increased. ② An apparent activation energy was calculated to be 44.92kcal/mol, with a correlation of 96.93%.

Experimental Studies on Heat Conductivity of Human Bone and Torsional Strength of Pasteurized Porcine Tibia (생체골의 열전도성 및 열처리된 골의 염전력 변화에 대한 실험적 연구)

  • Park, Il-Hyung;Kim, Sin-Gun;Shin, Dong-Kyu;Ihn, Joo-Chul
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.1 no.1
    • /
    • pp.7-16
    • /
    • 1995
  • In countries where confucianism is popular, it is extremely hard to get fresh cadaver bone for allograft. Therefore in Korea, the reimplantation of resected autoclaved autogenous bone segments has been increasingly performed for limb reconstruction of extremities with malignancies. To preserve the bone morphogenetic protein and mechanical strength of heated bone, many studies have reported that pasteurization of bone is far better than autoclaving over $100^{\circ}C$. Based on this assumption, replacement with a pasteurized autogenous bone graft after resection of a malignant bone tumor was deemed feasible for reconstruction. However, little is known about how high a temperature and how much time for pasteurization is needed to make tumors completely necrotic and to maintain the mechanical strength of bone. Consequantly, experimental studies were carried out to test heat conductivity of human bone and torsional strength of porcine tibia after pasteurization. First, two pairs of human proximal tibia and distal femur were used. We used T-type thermocoples to check core temperature of the bone and a computerized data acquisition system to record results. Without reaming of the medullary cavity, in a $60^{\circ}C$-thermostatic saline tub, it took 32 minutes and 50 seconds to raise the core temperature of human proximal tibia from $20^{\circ}C$ to $58^{\circ}C$, and 30 minutes for distal femur. In a $80^{\circ}C$ saline tub, it took 12 minutes and 50 seconds for proximal tibia, and 11 minutes and 10 seconds for distal femur. In contrast, using porcine tibia whose cortical thickness is similar to that of human tibia, after reaming of the medullary canal, it took less than 3 minutes and 30 seconds in a $60^{\circ}C$ saline tub, less than 1 minute and 45 seconds in a $70^{\circ}C$ tub, and less than 1 minute in a $80^{\circ}C$ tub to elevate core temperature from $20^{\circ}C$ to $58^{\circ}C$. Second, based on data of the heat conductivity test, we compared the torsional strength before and after pasteurization. Twenty matched pairs of porcine tibia were used, The left one was used as a non-heated control group and the right one as a pasteurized experimental group. Wighout reaming of the medullary cavity, there was no statistical difference in torsional strength between the pasteurization of the $60^{\circ}C$-35minute and of $80^{\circ}C$-15minute. With reaming, we also found no statistical difference among pasteurization of $60^{\circ}C$-15 minute, of $70^{\circ}C$-15 minute, and of $80^{\circ}C$-15 minute groups. In conclusion, reaming of the medullary canal is very helpful in saving pasteurization time. And, in a $60^{\circ}C$ saline tub, no significant weakness in torsional strength occurs with pasteurization of the bone for up to 35 minutes. Also no significant weakness in torsional strength occurs with an exposure of 15 minutes to the $80^{\circ}C$ saline tub.

  • PDF