• Title/Summary/Keyword: Thermoplastic polypropylene

Search Result 84, Processing Time 0.022 seconds

Enhancement of Compatibility and Toughening of Commingled Packaging Film Wastes (혼합 폐포장 필름의 상용성 증진과 강인화)

  • Jeon Byeong-Hwan;Yoon Hogyu;Hwang Seung-Sang;Kim Jungahn;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • The relationships among mechanical properties, rheological properties, and morphology by reactive extrusion based on commingled pckaging film wastes contains polypropylene (PP) pckaging film system [PP/polyethylene (PE)/aluminum (Al)/poly(ethylene terephthalate) (PET)] and Nylon packaging film system[Nylon/PE/linear-low density polyethylene (LLDPE)] were investigated to improve the compatibility and toughness of these wastes using various compatibilizers such as ethylene vinylacetate (EVA), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer (SEBS-g-MA), polyethylene-graft-maleic anhydride (PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA) , polyethylene-graft-acrylic acid (PE-g-AA) and polypropylene-graft-acrylic acid (PP-g-AA). Compared with simple melt blend system, the blends showed improvement of about $50\%$ increase in physical properties when SEBS and EVA were added. However, SEBS-g-MA thermoplastic elastomer which is highly reactive with amine terminal group of nylon, resulted in about $200\%$ increase in impact strength. This compatibilization effect resulted from the increase of interfacial adhesion and the reduction of domain size of dispersed phase in PP/Nylon blend system.

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

A Study on the Filament Winding Process Using Thermoplastic Commingled Yarn (Commingled Yarn 을 이용한 열가소성 복합재료의 Filament Winding 공정에 관한 연구)

  • 김선경;김공민;이우일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.199-210
    • /
    • 2000
  • 복합재료의 성형 공정 중 하나인 Filament Winding 공정에 열가소성 기지재료인 폴리프로필렌(Polypropylene)과 강화섬유인 유리섬유로 이루어진 Commingled Yarn 을 이용한 연구를 수행하였다. 함침 과정을 해석하기 위한 계산모델을 제시하였다. 그리고 위의 모델링을 해석하는 데 필요한 복합재료 내의 온도 분포를 수치해석을 통해 계산하였고 실험을 통해 이를 검증하였다. 온도계산 결과를 함침도 예측에 이용하였다. 모델링을 통해 Filament Winding 공정의 주요 공정 변수를 찾아내었고 제시한 모델을 검증하기 위해 직접 Filament Winding 실험 장치를 제작하여 제품을 생산하고 모델과 비교하였다. 제작된 시편으로부터 함침도를 계산하는 방법을 제시하였다. 그 결과 함침도에 관해서 실험 결과가 모델과 그 경향이 뚜렷이 일치함을 확인하였다.

  • PDF

Study on the laser transmission-welding of thermoplastics (열가소성 플라스틱의 레이저 투과 접합에 환한 연구)

  • Seo Myung-hee;Ryu Kwang-hyun;Nam Gi-jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.34-40
    • /
    • 2005
  • Laser welding of thermoplastics is a new jointing technique with a host of advantages. It is not only another extremely useful welding method but also a cost-effective alternative to traditional techniques involving screws or adhesives. Transmission laser-welding of thermoplastics such as polycarbonate(PC), polypropylene(PP), polyvinyl chloride(PVC), low density polyethylene(LDPE) and acrylic using a high power diode laser has been studied experimentally. The optical transmission of each plastic has been measured at laser wavelength of 808nm. The weld process has been characterized by the specific energy and weld time required for each plastic. The characteristics of laser welding between same plastics have also been analyzed.

Study on Optimaization of Heating Element Gap in Resistance Welding using Thermoplastic resin (열가소성 수지 저항용접에서 발열체 간격의 최적화에 관한 연구)

  • Yun, Ho-Cheol;Im, Pyo;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.26-28
    • /
    • 2007
  • This research is concerned with a study of failure strength evaluation on heat element gap at resistance welding. The failure strength of resistance welded joint is changed by welding factor like as current(power level), welding time(total energy), pressure etc. and another heat element factor like as number of element line, element gap etc. Tensile-shear tests were carried out with the single-lap specimen using polypropylene(PP). The failure mechanism and optimization of gap was discussed in order to explain the tensile-shear strength evaluation on heat element gap at resistance welding. Orthogonal array was used by fractional factorial design for efficient experiments.

  • PDF

Effect of various carbon fillers on the electrical conductivity of PEMFC Separator made of thermoplastic composite (열가소성 수지와 carbon 충전제에 따른 PEMFC용 Separator의 전기 전도도 특성 연구)

  • Yoon, Yong-Hun;Lim, Seung-Hyun;Kim, Dong-Hak
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1241-1244
    • /
    • 2010
  • 본 논문에서는 Base resin으로 열가소성 고분자인 PP(Polypropylene)를 사용하였으며, 물리적 및 화학적 특성을 증대시키기 위해 주 첨가제로는 Expanded graphite와 보조 첨가제로 Multiwall carbon nanotube를 사용하여 2가지의 복합 소재를 제조 하였다. 제조한 복합소재를 활용하여 compression molding을 하였으며, 각 함량별 시편을 four point probe 장치를 사용하여 전기전도도를 측정 비교 하였다.

  • PDF

Mechanical Properties of Thermoplastic Composite Reinforced Porous Carbon

  • Hwang, Taek-Sung;Park, Jin-Won;Song, Hae-Young;Hwang, Eui-Hwan
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.87-90
    • /
    • 2000
  • Porous carbon from charcoal filled polypropylene composites were prepared and their mechanical properties were evaluated. In preparing the composites, crosslinking agent (sodium benzonate) were used in order to improve the bonding force between matrix and fillers. In this study, the effects of charcoal powder and sodium benzonate concentration on the mechanical properties and interface phenomena on the composites were evaluated. The mechanical properties of composites increased progressively with the decrease of filler loading. In the case of addition of the crosslinking agent into the composite, the mechanical properties were increased and showed maximum value at the 3 wt% concentration of sodium benzonate. According to the result of the TGA, the weight loss of composite according to crosslinking agent was not observed and initial thermal degradation temperature of composite reinforced charcoal was located at $390^{\circ}C$.

  • PDF

Effect of Molding Parameters on Viscosity of Unidirectional Fiber Reinforced Plastic Composites (일방향 섬유강화 플라스틱 복합재의 점도에 미치는 성형인자의 영향)

  • 조선형;안종윤;윤성운
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.41-48
    • /
    • 2000
  • The Compression molding process is widely used in the automotive industry to produce parts that are large, thin, light-weight, strong and stiff. Compression molded parts are formed by squeezing a glass fiber reinforced polypropylene sheet, known a glass mat thermoplastic(GMT), between two heated cavity surfaces. In this study, the anisotropic viscosity of the Unidirectional Fiber-Reinforced Plastic Composites is measured using the parallel plastometer and the composites is treated as an incompressible Newtonian fluid. The effects of molding parameter and fiber contents ratio on longitudinal/transverse viscosity are also discussed.

  • PDF

Study on the Functionalization of Waste EPDM and PP Blend

  • Chung, Kyungho;Kim, Jinhee
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.245-250
    • /
    • 2015
  • Recycling of ethylene-propylene-diene terpolymer (EPDM) scrap was tried by blending with polypropylene (PP). EPDM scrap powder was prepared by shear pulverization process at high temperature, which may lead to selective chain scission induced by difference in the critical elastic coefficient. On the other hand, EPDM scrap powder was prepared by adding a selected reclaiming agent during shear pulverization process at high temperature. Terpene as a bonding agent was then introduced to improve adhesion property. PP, used as a matrix for manufacturing thermoplastic elastomer, was modified by the incorporation of dicumyl peroxide and maleic anhydride. The functionalized EPDM and modified PP were blended and cured dynamically at $190^{\circ}C$. The blend materials prepared in this study showed the comparable results to those of conventional TPE in terms of tensile and flow properties. Also, the odor component of recycled EPDM was analyzed using GC-MS.

A Review on IPP/Elastomer/Nanofiller Composites for the Possibility of Use as Power Cable Insulations (동일배열 폴리프로필렌/엘라스토머/나노충전제 복합체의 전력케이블 절연체로서의 사용 가능성에 대한 문헌적 고찰)

  • Pyun, Sun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.184-192
    • /
    • 2012
  • For use as recyclable power cable insulations without dielectric oil, technology trends of IPP based thermoplastic polyolefin elastomer(TPO) nanocomposites were reviewed. In 2010 research results of IPP nanocomposite dielectrics for power capacitors showed promising high voltage properties except dielectric loss. Research of IPP based TPO nanocomposites for automotive exterior parts revealed considerable improvements of mechanical properties including impact strength, especially minimization of compatibilizer content, the origin of dielectric loss. A study on electrical properties of IPP based TPO nanocomposites containing a few weight percent of nanofillers for power cable insulations is suggested.