• Title/Summary/Keyword: Thermoplastic materials

Search Result 298, Processing Time 0.028 seconds

Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats

  • Lee Keunhyung;Lee Bongseok;Kim Chihun;Kim Hakyong;Kim Kwanwoo;Nah Changwoon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.441-445
    • /
    • 2005
  • Thermoplastic polyurethane elastomer (TPUe) fiber mats were successfully fabricated by electrospinning method. The TPUe fiber mats were subjected to a series of cycling tensile tests to determine the mechanical behavior. The electrospun TPUe fiber mats showed non-linear elastic and inelastic characteristics which may be due to slippage of crossed fiber (non-bonded or physical bonded structure) and breakage of the electro spun fibers at junctions (point-bonded or chemical bonding structure). The scanning electron microscopy (SEM) images demonstrated that the point-bonded structures of fiber mats played an important role in the load-bearing component as determined in loading-unloading component tests, which can be considered to have a force of restitution.

Polyolefin Block Copolymer Thermoplastic Elastomer (폴리올레핀 블록공중합체 열가소성 탄성체)

  • Koo, Chong Min
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Polyolefin block copolymer has been taking a great deal of attention due to their great potential in polymer industry since a new metallocene catalytic method for producing polyolefin block copolymer was developed by Dow Chemicals. However, so far, there was no systematic study of olefin block copolymer. In this review, Linear polyolefin block copolymers, containing semicrystalline poly (ethylene) (E) blocks and a rubbery block as a thermoplastic elastomer, were investigated in the viewpoint of microphase separation mode, microstructure, deformation behavior, and molecular architecture.

Physical and chemical Cross-Linking Effects in Thermoplastic Polyurethane Elastomers with Different Macroglycol

  • Heo, Jae-Ho;Jeong, Du-Gam;Kim, Eun-Young;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1997.10a
    • /
    • pp.126-130
    • /
    • 1997
  • A series of Thermoplastic polyurethane elastomers was prepared via a two-step polymerization process. The NCO/OH feed ratio of polyurethane synthesized in this study was varied from 1 to 1.3. Studies have been made on the effects of chemical and physical cross-linkina, and the properties of thermoplastic polyurethane elastomers based on isophorone diisocyanate (IPDI)/1,4-butanediol (BD)/poly(propylene glycol) (PPG, MW:2000), isophorone diisocyanate (IPDI)/BD /poly(oxytetramethylene) glycol (PTMG, MW:2000) was compared. These materials were characterized using FTIR spectrometer, dynamic mechanical thermal analyzer, and tensile retraction tester. PTMG based polyurethane elastomers showed higher elasomeric behavior than PPG based polyurethane elastomers at the same NCO/OH ratio. This feature has been connected with the specific nature of the polyols. The permanent set(%) was decreased with increasing maximum elongation from 50% to 300%.

  • PDF

Physical Properties According to the Covering Process and Heat Treatment Condition of the Thermoplastic Polyetherester Elastomeric Fibers (에스터계 열가소성 탄성 섬유의 커버링 공정 및 열처리 조건에 따른 물성 변화)

  • Kim, Jin Oh;Kim, Young Su;Park, Seong Woo
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.120-130
    • /
    • 2021
  • The condition of covering process using thermoplastic polyetherester elastomeric fibers(TPEE) was established. Two types of core yarn(TPEE, Spandex) and one type of effect yarn(PET) were used as materials to confirm the change in physical properties of covering yarn under various covering conditions. In addition, the effects of the treatment temperature on the elongation at break of covering yarn after heat treatment was analyzed. Through this analysis, it was confirmed that the elastic recovery of TPEE which is used as the core yarn was increased with the draw ratio, but decreases when it exceeds 1:2.5. And the elongation at break of the covering yarn could be increased by increasing the twist per meter of it. Additionally, it was confirmed that the elastic recovery of TPEE which is used as a core yarn, could be increased by applying heat treatment.

Selection Attributes and Trends of Thermoplastic Elastomers for Automobile Parts

  • Kim, Seongkyun;Park, Joon Chul;Jo, Mi Young;Park, Jun Il;Bae, Jae Yeong;Choi, Seok Jin;Kim, Il
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.48-58
    • /
    • 2017
  • Thermoplastic elastomers (TPEs), a unique class of polymers, combine the processing ease of thermoplastics with the advanced properties of thermoset rubbers. TPEs can be remelted several times without any significant loss of properties, and can be molded into complex shapes using conventional processing equipment. Due to their characteristics, TPEs are ideal for use in a variety of applications in the automotive field. Although the TPE market of the Republic of Korea is currently at its niche, the increasing manufacturing push from major companies is expected to open up multiple opportunities for these products in the automotive sector. This manuscript highlights a detailed technological trend of the global automotive thermoplastic elastomers market.

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF

The Use of Chemical Additives to Protect SBS Rubbers Against Ozone Attack

  • Moakes, C.A.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • SBS thermoplastic elastomers offer an inexpensive alternative to vulcanised rubbers for many undemanding applications. They are, however, particularly susceptible to attack from atmospheric ozone leading to cracking as soon as any strain is applied. In most rubber applications some strain is unavoidable. In this paper a compounding approach to protecting SBS thermoplastic rubbers against ozone is described. An explanation is offered for why a protective effect Is observed only when certain combinations of additive are used. SBS elastomers are the most affordable class of thermoplastic rubbers. To achieve finished products resistant to ozone and without compromising the light colours often demanded, recourse must be made to blending with other saturated elastomers or replacement by hydrogenated (SEBS) types. The latter is a significantly more expensive alternative. Under laboratory conditions where the rate of ozone attack is increased by several decades, unprotected SBS begins to crack within a few hours. Several different protective agents are examined here, the best of which, a cyclic enol ether, $Vulkazon^{(R)}$ AFD, can extend the resistance to any cracking to several weeks by the use of a few percent by weight of additive. The systems reported neither discolour the polymer nor stain other materials with which it may be in contact. Use of the protective systems described here could enable SBS elastomers to compete in many applications with the more expensive SEBS polymers.

  • PDF

Trends in Predicting Thermoforming-Induced Deformation of Thermoplastic Composites: A Review (열가소성 복합재의 열성형 변형 예측 연구 동향)

  • Solmi Kim;Dong-Hyeop Kim;Sang-Woo Kim;Soo-Yong Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.275-285
    • /
    • 2024
  • This paper presents research trends in predicting the deformation of carbon fiber reinforced thermoplastic (CFRTP) composites during thermoforming. Various thermoforming variables that must be considered during the CFRTP thermoforming stages are investigated, and factors influencing process-induced deformation are analyzed. Key material behavior models, such as crystallinity and viscoelastic, which are important for predicting thermoforming deformation, are also examined. Additionally, trends in predicting CFRTP thermoforming deformation using finite element analysis with material behavior models and machine learning techniques are analyzed. In summary, more precise prediction techniques for thermoforming deformation can be developed by associating them with material behavior models and considering thermoforming variables.

Adhesive Strength and Interface Characterization of CF/PEKK Composites with PEEK, PEI Adhesives Using High Temperature oven Welding Process (고온 오븐 접합을 적용한 PEEK, PEI 기반 CF/PEKK 복합재의 접착 강도 및 계면 특성 평가)

  • Park, Seong-Jae;Lee, Kyo-Moon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • This study was conducted to determine the effect of molecular formation of adhesive on interface characterization of thermoplastic composites. Carbonfiber/polyetherketoneketone (CF/PEKK) thermoplastic composites were fusion bonded and PEEK, PEI adhesive bonded using a high-temperature oven welding process. In addition, lap shear strength test and fracture surface analysis using a digital optical microscope and a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were performed. As a result, the adhesive bonding method improved adhesion strength with interphase having increased molecular formation of ether groups, ketone groups, and imide groups which mainly constitutes the CF/PEKK and adhesives. Furthermore, it was found that the use of PEEK containing more ether groups and ketone groups forms a more strongly bonded interphase and enhances the adhesive force of the CF/PEKK composites.

Effect of Adding Graphene/Carbon Nanotubes (FCN) on the Mechanical Properties of Polyamide-Nylon 6 (그래핀/탄소나노튜브(FCN) 첨가에 따른 Polyamide-Nylon 6의 기계적 특성에 미치는 영향)

  • Seung-Jun Yeo;Hae-Reum Shin;Woo-Seung Noh;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1297-1303
    • /
    • 2023
  • Research on enhancing the mechanical strength, lightweight properties, electrical conductivity, and thermal conductivity of composite materials by incorporating nano-materials is actively underway. Thermoplastic resins can change their form under heat, making them highly processable and recyclable. In this study, Polyamide-Nylon 6 (PA6), a thermoplastic resin, was utilized, and as reinforcing agents, fused carbon nano-materials (FCN) formed by structurally combining Carbon Nanotube(CNT) and Graphene were employed. Nano-materials often face challenges related to cohesion and dispersion. To address this issue, Silane functional groups were introduced to enhance the dispersion of FCN in PA6. The manufacturing conditions for the composite materials involved determining the use of a dispersant and varying FCN content at 0.05 wt%, 0.1 wt%, and 0.2 wt%. Tensile strength measurements were conducted, and FE-SEM analysis was performed on fracture surfaces. As a result of the tensile strength test, it was confirmed that compared to pure PA6, the strength of the polymer composite with a content of 0.05 wt% was improved by about 60%, for 0.1 wt%, about 65%, and for 0.2 wt%, the strength was improved by 50%. Also, when compared according to the content of FCN, the best strength value was shown when 0.1 wt% was added. The elastic modulus also showed an improvement of about 15% in the case of surface treatment compared to the case without surface treatment, and an improvement of about 70% compared to pure PA6. Through FE-SEM, it was confirmed that the matrix material and silane-modified nanomaterial improved the dispersibility and bonding strength of the interface, helping to support the load evenly and enabling effective stress transfer.