• Title/Summary/Keyword: Thermomechanical Behavior

Search Result 96, Processing Time 0.03 seconds

A Study on the Residual Stresses Using Elatoplastic Analysis in Metal matrix Composites (단섬유 금속복합재료의 탄소성 잔류응력해석)

  • 김흥건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.173-179
    • /
    • 1996
  • A computer simulation has been performed for the application to the elastoplastic stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite the micromechanics analysis and finite element analysis (FEA) were implemented. As the procedure the reasonably optimized FE mesh generations the appropriate imposition of boundary condition and the relevant postprocessing such as elastoplastic thermomechanical analysis were taken into account. For the numerical illustration an aligned axisymmetric single fiber model has been employed to assess field quantities. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

Characterization of superplastic material SPF8090 Al-Li for the strain-rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성재료의 물성치 평가)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.89-93
    • /
    • 1997
  • A superlastic material, aluminum - lithium alloy 8090, were examined with uniaxial tensile test to investigate its thermomechanical behavior. The tests were carried out at the strain-rates ranging from 2${\times}$10-4 to 1${\times}$10-2 and at the temperatures from 48 0$^{\circ}C$ to 540$^{\circ}C$. The experiments produced force-displacement curves which converted to stress-strain curves. From the curves, several important superplastic factor such as strain-rate sensitivity, optimum strain-rate and strength coefficient were obtained.

  • PDF

A Study on Hot Workability and Microstructural Development of 7075 Al Alloy (7075Al 합금의 고온소성 및 조직제어에 관한 연구)

  • 고병철;전정식;이현민;최규창;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.114-123
    • /
    • 1995
  • Hot workability and microstructural development of 7075Al alloy were studied by hot torsion test. With decling temperature from 440$^{\circ}C$ to 340$^{\circ}C$, and strain rate ranges form 5 ${\times}$10-3/sec to 5 ${\times}$10-1/sec , flow stress and microstructural development were analyzed . The hot resoration mechanism was found to be dynamic recrystalization (DRX) form the analysis of the flow curves and the microstructures. In multistage deformation with decreasing temperature grain refinement was obtained effectively compared to conventional thermomechanical treatment (TMT) process. The strain of the 1st stage deformation at 440$^{\circ}C$ was found to play an important role for the next stage deformation behavior at 380$^{\circ}C$.

  • PDF

Secondary Recrystallization Behavior in Mechanically Alloyed ODS NiAI (기계적 합금화한 ODS NiAI의 이차 재결정화 거동)

  • Eo, Sun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1248-1256
    • /
    • 1996
  • Ni 및 AI단원소 분말을 혼합하여 attrition mill을 사용하여 분위기 속에서 기계적 합금화 NiAI 기 산화물 분산강화 금속간화합물을 제조하였다. 제조된 분말은 여러 가지 다른 미세조직을 얻기 위하여 각기 다른 공정으로 열간성형을 하였으며, 연이어 이차 재결정 조직을 얻기 위한 가공열처리(thermomechanical treatment)를 실시하였다. 이차 재결정이 일어날 수 있는 선수조건으로서의초기 미세조직과 가공열처리와의 상관관계를 조사하였다. 정상 결정립 성장의억제와 접합조직의 존재가 이차 재결정을 일으키기 위한 필요조건으로 판명되었다. 이 재료에 있어서, 잔류 변형에너지를 공급할 수 있고 결정립을 미세화 할 수 있는 특정 공정하에서 항온 열처리 후 이차 재결정이 생성됨을 알 수 있었다.

  • PDF

Thermomechanical Local QC Analysis of Nanoscale Structure Considering Surface Effect (표면효과를 고려한 나노 사이즈 구조물의 local QC 열탄성 해석)

  • Yoo, Su-Young;Rhee, Seung-Yun;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.415-420
    • /
    • 2007
  • In analyzing the nano-scale behavior of nano devices or materials, QC method is efficient because it does not treat all the atoms. But for more accurate analysis in QC method, it is important to consider temperature and surface effects. In finite temperature, free energy is considered instead of potential energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the surface effects are more dominant. In this paper, temperature related Cauchy-Born rule and surface Cauchy-Born rule are proposed to configurate the strain energy density. This method is applied to small and homogeneous deformation in two dimensional problem using finite element simulation.

  • PDF

Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory

  • Abualnour, Moussa;Chikh, Abdelbaki;Hebali, Habib;Kaci, Abdelhakim;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.489-498
    • /
    • 2019
  • The thermo-mechanical bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which introduces undetermined integral terms and needs only four variables. The validity of the present model is proved by comparison with solutions available in the literature.

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

Reverse Transformation Behavior in Thermomechanically Processed Fe-30%Ni-0.35%C Alloy (가공열처리한 Fe-30%Ni-0.35%C합금의 역변태거동)

  • Ahn, H.K.;Yu, C.H.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.313-319
    • /
    • 1999
  • The reverse transformation behavior was investigated by DSC analysis in thermomechanically processed Fe-30%Ni-0.35%C alloy. Upon increasing the heating rate from $5^{\circ}C/min$ to $80^{\circ}C/min$, the As point of the ausformed martensite was not changed and the As point of the marformed martensite decreased at reverse transformation. The Af points showed to be constant with increasing the heating rate both in the ausformed martensite and in the marformed martensite. With increasing the deformation degree, the As points of the ausformed martensite and the marformed martensite increased and the Af points appeared to be constant, structures. The enthalpy changes increased with increasing the heating rate, but decreased with increasing the deformation degree in both structures.

  • PDF

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.