• Title/Summary/Keyword: Thermogravimetric Analysis

Search Result 803, Processing Time 0.022 seconds

Influence of Activation Temperature on Micro- and Mesoporosity of Synthetic Activated Carbons

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • v.2 no.2
    • /
    • pp.105-108
    • /
    • 2001
  • In this work, the activated carbons (ACs) with high micropores were synthesized from the polystyrene (PS) with KOH as activating agent. And the influence of activation temperature on porosity of the ACs studied was investigated. The porous structures of ACs were characterized by nitrogen adsorption at 77K using BET and D-R equations, and MP and BJH methods. The weight loss behaviors of the samples impregnated with KOH were also monitored using thermogravimetric analyzer (TGA). As a result, it was found that the samples could be successfully converted into ACs with well-developed micropores. From the results of pore size analysis, it was confirmed that elevated activation temperature does lead to the formation and deepening of microstructures without significant change in mesostructures. A thermogravimetric study showed that KOH could suppress the thermal decomposition of the sample, resulting in the increase of carbon yields.

  • PDF

Characteristics of Pore Development for Activated Carbon Fiber from Poly Acrylo-nitrile (1)-Stabilization and Carbonization- (PAN 계 활성탄소 섬유의 세공발달 특성 (1)-안정화(安定化) 및 탄화(炭化)-)

  • Park, Jong-Hak;Cho, Byung-Rin
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1991
  • Thermogravimetric measurements have been carried out to investigate the stabilization and carbonization of copolymer of acrylonitrile(95 wt %) and methyl acrylate(5 wt %) at various heating rates. The cyclization and dehydrogenation during the stabilization were important factors to determine pore development in the carbonization process. The pore and the specific surface area during the carbonization began to develope at the temperature higher than $400^{\circ}C$.

  • PDF

Synthesis and Characterization of Oligomers Composed of Alternating 2,5-Bis(ethynylenedimethylsilylene)thienylene and Arylene Units

  • Kwak, Young-Woo;Lee, Kyung-Koo;Cha, Seung-Hun;Lee, Sang-Koo;Lee, In-Sook;Park, Yong-Tae;Lee, Jae-Keun;Yoh, Soo-Dong;Kim, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.479-483
    • /
    • 2003
  • The reactions of 2,5-bis(ethynyldimethylsilyl)thiophene (1) with aromatic dihalides(1,4-dibromobenzene, 4,4'- dibromobiphenyl, 9,10-dibromoanthracene, 2,5-dibromopyridine, 2,5-dibromothiophene, and 2,6-diiodo-4- nitroaniline) were carried out in the presence of a $[(PPh_3)_2PdCl_2]$-CuI catalyst in refluxing triethylamine to give poly{[2,5-bis(ethynylenedimethylsilylene)thienylene](arylene)} (2-7) with molecular weights of 2200-7400. The oligomers reveal characteristic absorption in the UV/visible region. The thermal behavior of 2-7 was examined by thermogravimetric analysis in an argon atmosphere.

Characteristics of Pore Development for Activated Carbon Fiber from Polyacrylonitrile(II) -Activation- (PAN계 활성탄소 섬유의 세공발달 특성(II) -활성화-)

  • Park, Jong-Hak;Cho, Byung-Rin
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.113-124
    • /
    • 1993
  • Thermogravimetric analysis of copolymer of acrylonitrile(95%) and methyl acrylate(5%) have been carried out to investigate the activation under $H_2O$(30%) -$N_2$atmosphere at various heating rates. The kinetic equation [$f=1-\exp(-a{\Delta}T)^b$] which was derived on the basis of the nonisothermal activation process of carbon fiber in the $H_2O$(30%)-$N_2$system showed good agreement with experimetal results. The pore volume upon conversion was in good agreement with the model of theoretical pore volume. The pore structures of the activated carbon fiber were influenced by the heating rate, activation temperature and internal-external conversions.

  • PDF

Thermal Characteristics of Polyvinylchloride in Combustion Reaction Using TGA (TGA를 이용한 폴리염화비닐의 연소반응에서의 열적 특성 연구)

  • Seo, Su-Eun;Kang, Yun-Jin;Min, Cho-Young;Bae, Dong-Chul;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • The combustion reaction of polyvinylchloride(PVC) was investigated using a thermogravimetric technique under an air atmosphere condition at several heating rates from 10 to $50^{\circ}C$/min. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative were analyzed by a variety of analytical methods such as Kissinger, Friedman, Chatterjee-Conrad, Ozawa and Coats-Redfern methods. The combustion reaction of PVC proceeded in two steps; the first step was caused by the dehydrochlorination process in PVC, and the second step by the combustion of polyene. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because there are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis.

A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Methyl Methacrylate (메틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성)

  • 주영배;이내우;최재욱;강돈오;설수덕
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.68-75
    • /
    • 2001
  • Photopolymerization, the utilization of electromagnetic radiation(or light) as the energy source for polymerization of functional monomers, oligomers is the basis of important commercial processes with broad applicability, including photoimaging and RV curing of coatings and inks. The objective of this study is to investigate the characteristics of environmental fraternitive photopolymerization of methyl methacrylate(MMA). This work is the first step to continue further research about alkyl methacrylate. The experiment was done in aqueous solution under the influence of photo-initiator concentration(0.05-0.25mol/l), light intensity (5000-9000 ${\mu}J/cm^2$) and monomer concentration(2-6mol/l). Methyl methacrylate was polymerized to high conversion ratio using hydrogen peroxide($H_2O_2$) and the kinetics model we have obtained is as follows. $R_p=k_p[S]^{0.41}[M]^{0.62}[L]^{2.45} exp(53.64/RT$). The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it res 45.4Kca1/mol.

  • PDF

Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene

  • Monji, Parisa;Jahanmardi, Reza;Mehranpour, Milad
    • Carbon letters
    • /
    • v.27
    • /
    • pp.81-89
    • /
    • 2018
  • The present study aimed to prepare a novel efficient flame retardant additive for polypropylene. The new flame retardant was prepared by chemical grafting of melamine to graphene oxide with the aid of thionyl chloride. Fourier-transform infrared spectroscopy and thermogravimetric analysis proved that melamine had been successfully grafted to the graphene oxide. The modified graphene oxide was incorporated into polypropylene via solution mixing followed by anti-solvent precipitatio. Homogeneous distribution as well as exfoliation of the nanoplatelets in the polymer matrix was observed using transmission electron microscopy. Thermogravimetric analysis showed a significant improvement in the thermo-oxidative stability of the polymer after incorporating 2 wt% of the modified graphene oxide. The modified graphene oxide also enhanced the limiting oxygen index of the polymer. However, the amount of improvement was not enough for the polymer to be ranked as a self-extinguishing material. Cone calorimetry showed that incorporating 2 wt% of the modified graphene oxide lowered total heat release and the average production rate of carbon monoxide during burning of the polymer by as much as 40 and 35%, respectively. Hence, it was concluded that the new flame retardant can retard burning of the polymer efficiently and profoundly reduce suffocation risk of exposure to burning polymer byproducts.

Thermal Properties of Chloroprene Rubber with $^{60}Co\;{\gamma}$-ray Irradiation ($^{60}Co\;{\gamma}$-선 조사에 따른 클로프렌 고무의 열적 특성)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.64-70
    • /
    • 2003
  • The thermal properties of chloroprene rubber (CR) with $^{60}Co\;{\gamma}$-ray irradiation has been investigated. The prepared CR was irradiated up to 1000kGy radiation dose by $^{60}Co\;{\gamma}$-ray and the radiation degradation of CR was investigated by thermogravimetric analysis and differential acanning calorimetry. Dynamic mechanical properties measurement and FT-IR observation are carried out as well. From these analyses results, the glass transition temperature($T_g$), decomposition onset temperature(DOT), oxidative induction time(OIT), the peak temperature of loss modulus and mechanical tan ${\delta}$ values were compared for the radiation degradation level of CR. The tendency between $T_g$ and peak temperature of loss modulus and mechanical tan ${\delta}$ agreed well with radiation doses. Decomposition temperature, OIT and DOT showed the same tendencies as increasing radiation doses. It was verified that these analyses are available to estimate the degradation level of CR.

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications

  • Eid, Mohanad S.;Bondouk, I.I.;Saleh, Hosam M.;Omar, Khaled M.;Sayyed, M.I.;El-Khatib, Ahmed M.;Elsafi, Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1456-1463
    • /
    • 2022
  • The aim of this work is to study the radiation shielding properties of cement samples with waste glass incortated into its composition. The mass attenuation coefficient (MAC) of the samples were experimentally determined to evaluate their radiation shielding ability. The experimental coefficient was evaluated using NaI detector for gamma energies between 59.53 keV and 1408.01 keV using different radioactive point sources Am-241, Eu-152, Co-60, and Cs-137, and the gamma transmission parameters half-value layer, mean free path, and transmission factor were calculated. The theoretical coefficient of the composites was determined using Geant4 and XCOM software. The results were also compared against Geant4 and XCOM simulations by calculating the relative deviation between the values to determine the accuracy of the results. In addition the mechanical properties (including Compressive and porosity) as well as the thermogravimetric analysis were tested for the present samples. Overall, it was concluded that the cement sample with 50% waste glass has the greatest shielding potential for radiation shielding applications and is a useful way to reuse waste glass.