• 제목/요약/키워드: Thermoelectric Effect

검색결과 200건 처리시간 0.028초

복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구 (Experimental fabrication and analysis of thermoelectric devices)

  • 성만영;송대식;배원일
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

열전냉각소자와 열전발전소자의 발전특성 (Characteristics of electric power for thermoelectric cooling & generating module)

  • 우병철;이희웅;이동윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was 0.15-0.4$\Omega$ Developed thermoelectric modules can be expected th have better properties than thermoelectric cooling modules above $70^{\circ}C$ in temperature difference between hot and cold ends.

  • PDF

마이크로 열전냉각기의 열성능에 대한 열전소자 두께의 영향 (Effect of the Thermoelectric Element Thickness on the Thermal Performance of the Thermoelectric Micro-Cooler)

  • 이공훈;김욱중
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.211-217
    • /
    • 2006
  • The three-dimensional numerical analysis has been carried out to figure out the effect of the thermoelectric element thickness on the thermal performance of the thermo-electric micro-cooler. The small-size and column-type thermoelectric cooler is considered. It is known that tellurium compounds currently have the highest cooling performance around the room temperature. Thus, in the present study, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ are selected as the n- and p-type thermoelectric materials, respectively. The thermoelectric leg considered is less than $20{\mu}m$ thick. The thickness of the leg may affect the thermal and electrical transport through the interfaces between the leg and metal conductors. The effect of the thermoelectric element thickness on the thermal performance of the cooler has been investigated with parameters such as the temperature difference, the current, and the cooling power.

온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성 (Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water)

  • 우병철;이희웅;서창민
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

차량용 냉방시스템에의 열전소자 적용에 관한 연구 (A Study on the Application of Thermoelectric Module in the Air Conditioner System Using Automotive)

  • 김순호
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.32-38
    • /
    • 2008
  • The improvement of cooling ability for the air conditioner is the most efficient method of application of its system. Therefore, this study has been investigated the improvement of cooling ability for the air conditioner using automotive by attached of a thermoelectric module. According to the result of test, capacity of the thermoelectric module make temperature range from $-75^{\circ}C$ to $+300^{\circ}C$ possible to cooling and exothermic. In addtion to, the reduction effect of energy revealed and the effect of liquid hammer remained with safety by attached the thermoelectric module. It was found that the air conditioner system by attached thermoelectric module have better cooling ability than the air conditioner system of existing vehicle.

  • PDF

열전냉동기용 열전요소의 최적화 (Optimization of Thermoelectric Elements for Thermoelectric Coolers)

  • 정은수
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.409-414
    • /
    • 2012
  • A theoretical investigation to optimize thermoelectric elements for thermoelectric coolers was performed using a new one-dimensional analytic model. Mathematical expressions for the optimum current and the optimum length of a thermoelectric element, which maximize the coefficient of performance of thermoelectric coolers, were obtained. The optimum current is expressed in terms of the cooling load for a thermoelectric element, the hot and cold side temperatures and thermoelectric properties, but not the length of a thermoelectric element. The optimum current is proportional to the cooling load and decreases as the temperature difference between the hot and cold sides decreases. It is also shown that the optimum length of a thermoelectric element decreases as the cooling load increases.

열전소자 및 열전냉각장치의 성능에 관한 연구 (A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System)

  • 유성연;홍정표;심우섭
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.

알루미나 나노 Particle의 분산 평가 및 최적화

  • 박국효;신효순;여동훈;홍연우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.251-251
    • /
    • 2009
  • The generation of energy and the cooling of system using thermoelectric semiconductor material have been in spotlight. Thermoelectric effect increases with the decrease of the thermal conductivity. In the thermoelectric devices, thermal conductivity is related to phonon scattering. Therefore, few studies have been conducted in the thermoelectric materials dispersed nano oxide particle for increasing the phonon scattering. However, core-shell structure which nano particle disperses in solvents and then which thermoelectric materials coated on the nano oxide particles has not been reported. In this study, we selected commercial nano powder such as $Al_2O_3$. This nano particle was about 20nm and was crushed aggregate by mechanical treatment. We have developed the effect of the dispersant and the solvent. The properties of particles were evaluated by SEM, TEM, particle size analysis, and BET. Dispersion and dispersion stability were evaluated by electronic microscope and turbidity.

  • PDF

열전발전량에 영향을 미치는 요인과 최적의 열전발전시스템에 관한연구 (A Study for Thermoelectric Generator System And Caused Low Thermoelectric Power)

  • 문채주;정의헌;임정민;박상진;김태곤;김용구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.68-74
    • /
    • 2008
  • This paper describes the causes and effects that have influence on thermoelectric generation. If heat transfer is unequal to thermoelectric modules, we could not get the maximum thermoelectric power. So, by experiment, we analysed the differences of power generation according to the state of the contact between thermoelectric module and heat source. And with the variation of heat transfer area, the generated power was analysed also. Using the experimental results we proposed a thermoelectric generation system.

  • PDF