• Title/Summary/Keyword: Thermoelectric Conversion

Search Result 54, Processing Time 0.02 seconds

Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer (압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구)

  • Chang Min Baek;Geon Lee;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.620-626
    • /
    • 2023
  • Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

SiGe Alloys for Electronic Device Applications (실리콘-게르마늄 합금의 전자 소자 응용)

  • Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The silicon-germanium (SiGe) alloy, which is compatible with silicon semiconductor technology and has a smaller band gap and a lower thermal conductivity than silicon, has been used to fabricate electronic devices such as transistors, photodetectors, solar cells, and thermoelectric devices. This paper reviews the application of SiGe alloys to electronic devices and related technical issues. Since the SiGe alloy comprises germanium whose band gap is smaller than silicon, its band gap is also smaller than that of silicon irrespective of the ratio of silicon to germanium. This narrow band gap of SiGe enables the base thickness of bipolar transistors to decrease without a loss in current gain so that it is possible to improve the speed of bipolar transistors by adopting the SiGe-base. In addition, the conversion efficiency of solar cells is enhanced by the absorption of long-wavelength light in the SiGe absorption layer. Phonon scattering caused by the irregular distribution of alloying elements induces the lower thermal conductivity of SiGe than those of pure silicon and germanium. Because a thin film layer with a low thermal conductivity suppresses thermal conduction through a thermal sink, the SiGe alloy is considered to be a promising material for silicon-based thermoelectric systems.

DESIGN AND DEVELOPMENT OF MULTI-PURPOSE CCD CAMERA SYSTEM WITH THERMOELECTRIC COOLING I. HARDWARE (열전냉각방식의 범용 CCD 카메라 시스템 개발 I. 하드웨어)

  • Kang, Y.W.;Byun, Y.I.;Rhee, J.H.;Oh, S.H.;Kim, D.K.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.349-366
    • /
    • 2007
  • We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E($768{\times}512$), KAF-1602E($1536{\times}1024$), KAF-3200E($2184{\times}1472$) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately $0.4^{\circ}C$ in the max. range of temperature, ${\Delta}33^{\circ}C$. This CCD camera system has with readout noise $6\;e^-$, and system gain $5\;e^-/ADU$. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.