• 제목/요약/키워드: Thermodynamic properties

검색결과 558건 처리시간 0.029초

A Study on the Prediction of Hydrogen Vehicle by the Thermodynamic Properties

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.79-83
    • /
    • 2015
  • Hydrogen has long been recognized as a fuel having some unique and highly desirable properties, for application as a fuel in engines. Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient, in comparison to those of the other fuels. Such differences together with its extremely low density and low luminosity help to give hydrogen its unique diffusive and heat transfer characteristics. The thermodynamic and heat transfer characteristics of hydrogen tend to produce high compression temperatures that contribute to improvements in engine efficiency and lean mixture operation.

Combustion Characteristics of Hydrogen by the Thermodynamic Properties Analysis

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.84-90
    • /
    • 2015
  • Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient. Hydrogen, as an energy medium, has some distinct benefits for its high efficiency and convenience in storage, transportation and conversion. Hydrogen has much wider limits of flammability in air than methane, propane or gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustibles. Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas.

대체 소화제의 열역학적 물성 비교 (Comparison of Thermodynamic Properties of Alternative Fire Extinguishing Agent)

  • 김재덕;여미순;이광진;이윤우;장윤호;노경호
    • 한국화재소방학회논문지
    • /
    • 제18권1호
    • /
    • pp.7-12
    • /
    • 2004
  • 몬트리올 의정서에 의해서 규제 받는 CFCs와 Halon의 대체 물질인 HFC-23, HFC-125, HFC-227ea, HFC-236fa와 불활성 화합물 $Ar, N_2, CO_2$의 열역학적 물성인 포화압력, 밀도, 엔탈피, 점도를 비교하였다. 본 연구에서는 소화제의 물성을 문헌 값을 온도의 함수로서 표시하였다. HFC 화합물의 열역학적 물성은 Halon-1301과 비슷하게 나타내었다. 불활성 화합물은 주로 혼합물로 이용되지만, 불활성 화합물의 물성은 Halon-1301에 비하여 바람직하지 않았다.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

내열 주조 합금 (IN-657) 파괴 거동 해석을 위한 Ni-Cr-Nb-C 시스템 열역학 모델링 (Thermodynamic Modeling of Ni-Cr-Nb-C System for Analysis of Fracture Behavior of Heat-resistant Casting Alloys (IN-657))

  • 김동응
    • 한국주조공학회지
    • /
    • 제41권5호
    • /
    • pp.445-453
    • /
    • 2021
  • 다양한 합금계에 대한 계산열역학은 CALPHAD 기법으로 잘 알려져있다. 실험적으로 측정된 열역학 특성들을 활용하여 각 상에 대한 Gibbs 에너지 모델 파라미터들을 구하여, 주로 실험적으로 측정되지 못한 영역에 대한 예측이나 실험 결과에 대한 열역학 해석에 활용되고 있다. 본 연구에서는 내열 주조 합금 (IN-657)이 장시간 사용 후에 일정 영역에서 파괴되는 현상의 열역학적 해석을 위해 Ni-Cr-Nb-C 사원계 시스템의 열역학 모델링을 수행하였고, Cr 함량에 따른 시스템의 안정상, 온도에 따른 상분율 및 Ni2Cr상의 long range ordering 파라미터를 계산하였고 실험결과와 비교하였다. 계산된 열역학 물성들은 실험으로 보고된 파괴온도 영역 및 해당 영역에서 생성된 안정상에 대한 결과를 잘 설명한다. CALPHAD 기법을 통한 열역학 모델링은 다양한 주조 합금의 열역학적 거동을 해석하고 예측하는데 유용하게 사용될 수 있을 것으로 기대된다.

TIME-DEPENDENT DUST FORMATION IN NOVAE

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The dust formation processes in novae are investigated with close attention to recent infrared observations. Using mainly the classical nucleation theory, we have calculated the time scales of dust formation and growth in the environments of novas. Those time scales roughly the typical observations. We have classified the dust-forming novae into three classes according to their explosion properties and the thermodynamic properties of dust grains. Oxygen grains form much later than carbon grains because of their thermodynamic properties. The effect of grain formation to the efficiency of stellar winds to drive the material outward is tested with newly obtained Planck mean values of dust grains.

  • PDF

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.

Theoretical Study of the N-(2,5-Methylphenyl)salicylaldimine Schiff Base Ligand: Atomic Charges, Molecular Electrostatic Potential, Nonlinear Optical (NLO) Effects and Thermodynamic Properties

  • Zeyrek, Tugrul C.
    • 대한화학회지
    • /
    • 제57권4호
    • /
    • pp.461-471
    • /
    • 2013
  • Optimized geometrical structure, atomic charges, molecular electrostatic potential, nonlinear optical (NLO) effects and thermodynamic properties of the title compound N-(2,5-methylphenyl)salicylaldimine (I) have been investigated by using ab initio quantum chemical computational studies. Calculated results showed that the enol form of (I) is more stable than keto form. The solvent effect was investigated for obtained molecular energies, hardneses and the atomic charge distributions of (I). Natural bond orbital and frontier molecular orbital analysis of the title compound were also performed. The total molecular dipole moment (${\mu}$), linear polarizability (${\alpha}$), and first-order hyperpolarizability (${\beta}$) were calculated by B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets to investigate the NLO properties of the compound (I). The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450 K.

초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구 (A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.