• 제목/요약/키워드: Thermodynamic parameter

검색결과 104건 처리시간 0.025초

Ni(II)-거대고리 리간드 착이온 ($NiL_m{^{2+}}$) 과 $CN^-$ 이온간의 반응성 (Chemical Reactivity between Ni(II)-Macrocycle Complex Ions ($NiL_m{^{2+}}$) and $CN^-$)

  • 박유철;변종철
    • 대한화학회지
    • /
    • 제31권4호
    • /
    • pp.334-343
    • /
    • 1987
  • $NiL_m{^{2+}}$착이온 {$Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}$}과 $CN^-$이온 사이의 화학반응은 분광광도법으로 연구하였다. $NiL_m{^{2+}}$착이온과 $CN^-$이온으로부터 1:1착이온, $[NiLm(CN)]^+$생성반응의 평형상수$(K_1)$는 3 ~ $25^{\circ}C$ 범위에서 결정되었다. $NiL_m{^{2+}}$착이온이 $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+}$, 그리고 $Ni(meso-[14]-decane)^{2+}$일때 평형상수($K_1$)은 $15^{\circ}C$에서 각각 4.7, 5.3, 6.2, 7.5, 9.4, 및 9.8이었다. $K_1$값은 온도가 증가함에 따라 감소하였다. $K_1$에 대한 온도영향으로 부터 열역학적 파라메터 $({\Delta}G^{\circ},\;{\Delta}H^{\circ},\;{\Delta}S^{\circ})$를 계산하였으며, 이 결과 $[NiLm(CN)]^+$ 생성반응은 모두 발열반응으로 나타났다. $NiL_m{^{2+}}$ 착이온과 $CN^-$이온은 반응하여 Ni(CN)_4{^{2-}}$이온과 거대고리 리간드 (Lm)가 생성된다. $[CN^-],\;[HCN],\;and\;[OH^-]$ 변화에 따라 $Ni(CN)_4{^{2-}}$이온의 생성속도는 0.5M $NaClO_4$, 온도 3∼$25^{\circ}C$ 범위에서 연구되었다. $[CN^-]$가 일정할 때 [HCN]가 증가하면 $k_{obs}/[CN^-]^2$값은 선형으로 증가하였다. $OH^-$ 이온이 과량으로 존재할 때 [$OH^-$]에 따라 역시 $k_{obs}/[CN^-]^2$ 값은 선형으로 증가하였다. $NiL_m{^{2+}}$ 착이온과 $CN^-$이온 반응의 속도상수($k_{obs}$)에 대한 온도영향으로 부터 활성화 파라메터$({\Delta}H^{\neq},\;{\Delta}S^{\neq})$를 결정하였다. $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+}$, 그리고 $Ni(meso-[14]-decane)^{2+}$ 순서로 d-d 전이에너지, $ν(cm^{-1})$가 감소할수록, ${\Delta}H^{\neq}$도 점차적으로 감소하였다. 그리고 5가지의 $NiL_m{^{2+}}$ 착이온과 $CN^-$이온 사이의 반응은 동일한 경로로 반응이 진행되었다.

  • PDF

제초성 Flazasulfuron의 Smile 자리옮김 반응 (Smile Rearrangement of Herbicidal Flazasulfuron)

  • 이광재;김용집;김대황;성낙도
    • Applied Biological Chemistry
    • /
    • 제39권1호
    • /
    • pp.70-76
    • /
    • 1996
  • 일련의 pyridylsulfonyl urea들을 합성하고 25%(v/v) 디옥산 수용액의 넓은 pH범위에서 가수분해 반응속도 상수를 측정하였다. pH-효과, 용매 효과($m{\ll}1,\;n{\ll}3$${\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), 일반 염기-효과, 산-해리상수(pKa, 3: 4.9 및 5: lit.4.6), 열역학적 활성화 파라미터(${\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.$) 및 생성물 분석 결과로부터 반응속도식을 유도하고 가수분해 반응 메카니즘을 제안하였다. 즉, 비(H)치환체, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3은 산성용액에서 A-2형(또는 $A_{AC}2$)반응 그리고 염기성 용액 에서는 $(E_1)_{anion}$ 메카니즘으로 가수분해 반응이 일어난다. 반면에 trifluoromethyl-치환체, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluorornethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron)는 산성 용액중에서 $A-S_N2Ar$형의 반응으로 생성된 conjugate acid($5H^+$), 그리고 pH 9.0 이상에서는 $(E_1)_{anion}$$(E_1CB)_R$ 반응으로 생성된 conjugate base(CB)를 거쳐 산성 및 염기성 용액중에서 모두 5원자 고리 중간체를 경유하는 Smile 자리옮김 반응으로 산성에서는 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) 그리고 염기성에서는 3-trifluoromethyl-2-pyridyl-4,6-dimethoxy-pyrimidinyl amine(PPA)을 생성하는 가수분해 반응이 일어남을 알았으며 5는 3보다 약 3.5배 빠른 반응속도를 나타내었다.

  • PDF

Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정 (Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants)

  • 전상규
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.132-140
    • /
    • 2007
  • 백금족/수용액 계면에서 Langmuir, Frumkin, Temkin 흡착등온식(${\theta}\;vs.\;E$)을 결정하기 위해 최적중간주파수 일 때 위상이동($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) 거동($-{\varphi}\;vs.\;E$)과 표면피복율($1{\geq}{\theta}{\geq}0$) 거동(${\theta}\;vs.\;E$) 사이의 선형 관계식 연구에 관한 위상이동 방법 및 상관계수를 제안하고 증명하였다. Ir/0.1 M KOH수용액 계면에서 음극 $H_2$ 발생 반응에 관한 수소의 Langmuir 및 Temkin 흡착등온식(${\theta}\;vs.\;E$), 평형상수(Langmuir 흡착등온식: $K=3.3{\times}10^{-4}mol^{-1}$, Temkin 흡착등온식: $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$), 상호작용 파라미터(Temkin 흡착등온식: g=4.6), 표준자유에너지($K=3.3{\times}10^{-4}mol^{-1}$ 일 때 ${\Delta}G_{ads}^0=19.9kJ\;mol^{-1},\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$$0.2<{\theta}<0.8$일 때 $16.5<{\Delta}G_{\theta}^0<23.3kJ\;mol^{-1}$)를 결정한다. 수소 흡착부위의 비균일 및 측 방향 상호작용 효과는 무시할 수 있다. ${\theta}$의 중간값 즉, $0.2<{\theta}<0.8$일 때 Langmuir 또는 Frumkin 흡착등온식과 상관관계에 있는 Temkin 흡착등온식은 상관계수를 이용하여 쉽게 결정할 수 있다. 위상이동 방법 및 상관계수는 흡착동온식(${\theta}\;vs.\;E$) 및 연관된 전극속도론과 열역학 파라미터(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$)를 결정하기 위한 정확하고 확실한 기술 및 방법이다.

살충제 buprofezin의 가수분해 반응 메카니즘 (Kinetics and mechanism of hydrolysis of insecticidal buprofezin)

  • 성낙도;유성재;최경섭;권기성
    • 농약과학회지
    • /
    • 제2권1호
    • /
    • pp.46-52
    • /
    • 1998
  • [ $45^{\circ}C$ ]의 15%(v/v) dioxane 수용액중에서 살충성 buprofezin(IUPAC : tert-butylimino-3-iso-propyl-5-phenylperhydro-1,3,5-thiadiazin-4-one)의 가수분해 반응속도상수와 pka상수(5.60)를 측정하고 pH-효과, 용매효과(m=0.34, n=2.45 및 $1{\gg}m$), 열역학적 활성화 파라미터(pH 4.0, ${\Delta}H^{\neq}$= 11.12 $kcal{\cdot}mol^{-1}$, ${\Delta}S^{\neq}$=-5.0e.u. 및 $E_{act.}$=11.76Kcal), 반응 속도식등의 반응 속도론적 및 생성물분석(1-isopropyl-3-phenyl urea) 등의 비속도론적 실험결과를 얻었다. 이들 자료의 검토로부터 pH 8.0이하의 산성용액에서는 특정($k_{H3O+}$)및 일반 산-촉매반응에 의한 $A-S_{E}2$형 및 A-2(또는 $A_{AC}2$)형 반응, 그리고 pH 9.0이상의 알카리성 용액에서는 일반염기 촉매반응($k_{H2O}$)에 의한 친핵성 첨가-제거 ($Ad_{N}-E$) 반응이 사면체($sp^{3}$) 중간체를 경유하는 궤도-조절 반응으로 진행되는 일련의 가수분해 반응메카니즘을 제안하였다. 또한, Buprofezin은 산성(pH8.0이하)용액보다 염기성(pH8.0이상) 용액중($k=10^{-8}sec.^{-1}$)에서 더욱 안정하였으며 $45^{\circ}C$의 중성(pH 7.0) 수용액 중에서 반감기($t=\frac{1}{2}$)는 약 3개월이었다.

  • PDF