• Title/Summary/Keyword: Thermodynamic instability

Search Result 31, Processing Time 0.021 seconds

Characteristic Analysis of Multicell Convective System that Occurred on 6 August 2013 over the Korean Peninsula (2013년 8월 6일 한반도에서 발달한 다세포(Multicell) 대류계의 특성 분석)

  • Yoon, Ji-Hyun;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.321-336
    • /
    • 2016
  • Damages caused by torrential rain occur every year in Korea and summer time convection can cause strong thunderstorms to develop which bring dangerous weather such as torrential rain, gusts, and flash flooding. On 6 August 2013 a sudden torrential rain concentrated over the inland of Southern Korean Peninsula occurred. This was an event characterized as a mesoscale multicellular convection. The purpose of this study is to analyze the conditions of the multicellular convection and the synoptic and mesoscale nature of the system development. To this end, dynamical and thermodynamic analyses of surface and upper-level weather charts, satellite images, soundings, reanalysis data and WRF model simulations are performed. At the beginning stage there was a cool, dry air intrusion in the upper-level of the Korean Peninsula, and a warm humid air flow from the southwest in the lower-level creating atmospheric instability. This produced a single cell cumulonimbus cloud in the vicinity of Baengnyeongdo, and due to baroclinic instability, shear and cyclonic vorticity the cloud further developed into a multicellular convection. The cloud system moved southeast towards Seoul metropolitan area accompanied by lightning, heavy precipitation and strong wind gusts. In addition, atmospheric instability due to daytime insolation caused new convective cells to develop in the upstream part of the Sobaek Mountain which merged with existing multicellular convection creating a larger system. This case was unusual because the system was affected little by the upper-level jet stream which is typical in Korea. The development and propagation of the multicellular convection showed strong mesoscale characteristics and was not governed by large synoptic-scale dynamics. In particular, the system moved southeast crossing the Peninsula diagonally from northwest to southeast and did not follow the upper-level westerly pattern. The analysis result shows that the movement of the system can be determined by the vertical wind shear.

A Numerical Study on Quarter-Wave Resonator Tuning for Suppression of Combustion Instability in a Model Combustion Chamber (모형 연소실에서 연소 불안정 억제를 위한 1/4파장 공명기의 동조 방법에 관한 수치적 연구)

  • Park, Ju-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • Acoustic tuning of quarter-wave resonator is investigated numerically to suppress combustion instability in liquid rocket engines. A model combustion chamber is adopted. First, basic acoustic characteristics are examined and acoustic damping is pursued by quarter-wave resonators. Next, for frequency tuning of the resonators, thermodynamic properties inside the acoustic resonators are estimated based on the numerical data. Maximum damping capacity is obtained when the resonators are designed to have the optimum length calculated with the properties. But, damping capacity induced by the resonators with the same length is comparable with it.

Studies on the Natural Dyes(7) -Dyeing properties of cochineal colors for silk fibers- (천연염료에 관한 연구(7) -코치닐색소의 견섬유에 대한 염색성-)

  • 조경래
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 1994
  • In order to study the properties of cochineal color, variation of uv, visible spectra by pH, dyeing properties on the silk in several dyeing conditions and thermodynamic parameter were investigated. Cochineal colors had an unusual to pH, especially had instability in alkali condition. An increase in the dyeing temperature and in time resulted in an increase in the dye content of silk fibers. Concentration of cochineal color in the silk fiber was related to pH and the maximum exhaustion of cochineal colors showed at about pH 3. The value of apparent diffusion coefficients and standard affinities of dyeing increased with the increase of dyeing temperature. The standard heats of dyeing(ΔH°), variation of entropy(ΔS°) and activation energy(E/sub act/) were caculated to be -1.72kcal/mo1, -3.77cal/mo1ㆍdeg and 1.26kcal/mo1, respectively. Silk fabrics were dyed bright red by tin chloride, reddish purple by copper sulfate, and bluish gray by iron sulfate, respectively. Lightfastness of silk fabrics mordanted by metal ion was weak.

  • PDF

Responses of Droplet Evaporation to High-Pressure Oscillations (강한 압력 교란에 구속된 고압 액적의 연소 응답)

  • Kim, Sung-Yup;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1286-1291
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

Time-Strain Non-Separability in Polymer Viscoelasticity and Its Thermodynamic Consequence (고분자 점탄성에서 Time-Strain Non-Separability와 그 열역학적 의미)

  • Kwon, Young-Don
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.536-544
    • /
    • 2001
  • We investigate, in the viewpoint of mathematical stability, the validity of the time-strain separability hypothesis employed in polymer viscoelasticity on the basis of experimental results. There have been suggested two distinct stability criteria such as Hadamard related to quick response and dissipative stability conditions, and in the limit of high deformation rate we have proved that separable constitutive equations are either Hadamard or dissipative unstable. The fact that the separability is not valid in the short time region in stress relaxation experiments exactly coincides with the results of our analysis. Therefore, since the application of the separability hypothesis incurs thermodynamic inconsistency as well as mathematical instability, such application should be avoided in the formulation of constitutive equations. In addition, careful attention should be paid to the limit of its validity even in experiments. It is also proved that there is neither theoretical nor physical validity of using the damping function.

  • PDF

Evaluation of the East Asian Summer Monsoon Season Simulated in CMIP5 Models and the Future Change (CMIP5 모델에 나타난 동아시아 여름몬순의 모의 성능평가와 미래변화)

  • Kwon, Sang-Hoon;Boo, Kyung-On;Shim, Sungbo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.133-150
    • /
    • 2017
  • This study evaluates CMIP5 model performance on rainy season evolution in the East Asian summer monsoon. Historical (1986~2005) simulation is analyzed using ensemble mean of CMIP5 19 models. Simulated rainfall amount is underestimated than the observed and onset and termination of rainy season are earlier in the simulation. Compared with evolution timing, duration of the rainy season is uncertain with large model spread. This area-averaged analysis results mix relative differences among the models. All model show similarity in the underestimated rainfall, but there are quite large difference in dynamic and thermodynamic processes. The model difference is shown in horizontal distribution analysis. BEST and WORST group is selected based on skill score. BEST shows better performance in northward movement of the rain band, summer monsoon domain. Especially, meridional gradient of equivalent potential temperature and low-level circulation for evolving frontal system is quite well captured in BEST. According to RCP8.5, CMIP5 projects earlier onset, delayed termination and longer duration of the rainy season with increasing rainfall amount at the end of 21st century. BEST and WORST shows similar projection for the rainy season evolution timing, meanwhile there are large discrepancy in thermodynamic structure. BEST and WORST in future projection are different in moisture flux, vertical structure of equivalent potential temperature and the subsequent unstable changes in the conditional instability.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

Calculation of Combustion Stability Limits Using Linear Stability Analysis in Liquid Rocket Engines (액체 로켓엔진에서 선형 연소 불안정 해석을 이용한 연소 안정한계 곡선 계산)

  • Sohn, Chae-Hoon;Moon, Yoon-Wan;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.93-101
    • /
    • 2004
  • A method to calculate stability limits is investigated to predict the characteristics of high-frequency combustion instability in liquid-propellant rocket engine. It is based on the theory of linear stability analysis proposed in previous works and useful to predict combustion stability at the beginning stage of engine development. The system of equations governing reactive flow in combustor has the simplified and linearized forms. The overall equation expressing stability limits is adopted. The procedures to evaluate quantitatively each term included in the equation are proposed. The thermo-chemical properties and flow variables required in the evaluation can be obtained from calculation of thermodynamic equilibrium, CFD results, and experimental test data. Based on the existent data, stability limits are calculated with actual rocket engine (KSR-III rocket engine). The present calculations show the reasonable stability limits in a quantitative manner and the stability characteristics of the engine are discussed. The prediction from linear stability analysis could be serve as the first approximation to the true prediction.

A Case Study of Mesoscale Snowfall Development Associated with Tropopause Folding (대류권계면 접힘에 의한 중규모 강설 발달에 대한 사례 연구)

  • Kim, Jinyeon;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.331-346
    • /
    • 2013
  • A case study of mesoscale snowfall with polar low signature during 25~26 December 2010 in South Korea is presented. The data used for analysis include surface and upper level weather charts, rain gauge, sea surface temperature, satellite imagery, sounding, and global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The system initiated with a surface trough near the bay of Bohai but quickly intensified to become a polar low within 12 hours. The polar low moved southeastward bringing snowfall to southwestern Korea. There was strong instability layer beneath 800 hPa but baroclinicty was weak and disappeared as the low progressed onto land. Shortwave at 500 hPa and the surface trough became in-phase which hindered the development of the polar low while it approached Korea. However, there were strong tropopause folding (~500 hPa) and high potential vorticity (PV), which allowed the system to maintain its structure and dump 20.3 cm of snow in Jeonju. Synoptic, thermodynamic, dynamic, and moisture analyses reveal that polar low developed in an area of baroclinicity with strong conditional instability and warm air advection at the lower levels. Further, the development of a surface trough to polar low was aided by tropopause folding with PV advection in the upper level, shortwave trough at 500 hPa, and moisture advection with low-level jet (LLJ) of 15 m $s^{-1}$ or more at 850 hPa. Maximum snowfall was concentrated in this region with convection being sustained by latent heat release.