• 제목/요약/키워드: Thermodynamic functions

검색결과 64건 처리시간 0.019초

Thermodynamic Properties of Caffeine in Compressed Gas

  • 김정림;경진범
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권5호
    • /
    • pp.432-436
    • /
    • 1995
  • The solubility of caffeine in compressed carbon dioxide has been measured to determine its fugacity coefficient between 330 and 410 K up to 500 bar. The result allows the calculation of the thermodynamic excess functions such as the molar excess enthalpy, the molar excess free energy, and the molar excess entropy. The pressure variations of the molar excess functions of caffeine in the caffeine-CO2 mixture were discussed and also compared them with those in the caffeine-NH3 mixture.

First-Principles Study of the Three Polymorphs of Crystalline 1,1-Diamino-2,2-dinitrotheylene

  • Wu, Qiong;Zhu, Weihua;Xiao, Heming
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2281-2285
    • /
    • 2013
  • The electronic structure, optical spectra, and thermodynamic properties of the three FOX-7 polymorphs (${\alpha}$, ${\beta}$, and ${\gamma}$) have been studied systematically using density functional theory. The LDA (CA-PZ) and generalized gradient approximation (GGA) (PW91) functions were used to relax the three FOX-7 phases without any constraint. Their density of states and partial density of states were calculated and analyzed. The band gaps for the three phases were calculated and the sequence of their sensitivity was presented. Their absorption coefficients were computed and compared. The thermodynamic functions including enthalpy (H), entropy (S), free energy (G), and heat capacity ($C_p$) for the three phases were evaluated.

Thermodynamic and Electrical Properties of Aminophenol and Anthranilic Acid Complexes with Some Transition Metals

  • M. G. Abd El Wahed;S. M. Metwally;M. M. El Gamel;S. M. Abd El Haleem
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.663-668
    • /
    • 2001
  • Thermodynamic and electrical functions of aminophenol and anthranilic acid complexes with Mn(Ⅱ), Fe(Ⅱ), Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) were determined. ΔG°, ΔH° and ΔS° were calculated with the help of stability constant values at different temperatures. It was found that the complexing processes have an exothermic nature. The studied complexes behave like semiconductors. The conduction takes place according to hopping mechanism. To show the composition of complexes conductometric and photometric titrations, IR spectra, thermal analysis and X-ray diffraction techniques were employed.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Al-Si-Fe 3원계 조성의 응고경로 예측 및 실험적 검증 (Prediction of Solidification Path in Al-Si-Fe Ternary System and Experimental Verification)

  • 이상환;이상목
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.34-45
    • /
    • 2010
  • The effects of alloy elements and cooling rate on the solidification path and the formation behavior of $\beta$ phase in Fe-containing Al-Si alloys were studied based on the thermodynamic analysis and the pertinent experiments. The thermodynamic calculation was systematically performed by using Thermo-Calc program. For the thermodynamic analysis in high alloy region of Al-Si-Fe ternary system, a thermodynamic database for Thermo-Calc was correctly updated and revised by the collected up-to-date references. For the thermodynamic-based prediction of various solidification paths in Fe-containing Al-Si system, liquidus projection of Al-Si-Fe ternary system, including isotherms, invariant, monovariant, bivariant reactions and equilibrium temperatures, was calculated and analyzed as functions of composition and temperature. The calculated results were compared to the experimental results using various casting specimens. In order to analyze various solidification sequences as functions of Si and Fe content, 4 representative alloy compositions, low Fe content in both low and high Si contents and high Fe content again in both low and high Si contents, were designed in this study. For better understanding of the influence of cooling rate on the formation behavior of $\beta$ phase, 4 alloys were solidified under furnace and rapidly cooled conditions. Cooling curves of solidified alloys were recorded by thermal analysis. Various important solidification events were evaluated using the first derivative-cooling curves. Microstructures of the casting samples were studied by the combined analysis of optical microscopy (OM) and scanning electron microscopy (SEM).

에너지 절약을 위한 "유용성"(Availability)의 열역학적 고찰 (Study on the Thermodynamic concept of "Availability" in Energy Conservation)

  • 손병찬
    • 품질경영학회지
    • /
    • 제14권2호
    • /
    • pp.33-39
    • /
    • 1986
  • This paper is to present basic concepts of availability, irreversibility, dead states, its relationship to other thermodynamic functions, and the history of availability. The balance of availability and effectiveness has also been formulated in order to build basis on which further study and actual application of availability in estimation of available energy are to be thought.

  • PDF

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.

Theoretical Study of the N-(2,5-Methylphenyl)salicylaldimine Schiff Base Ligand: Atomic Charges, Molecular Electrostatic Potential, Nonlinear Optical (NLO) Effects and Thermodynamic Properties

  • Zeyrek, Tugrul C.
    • 대한화학회지
    • /
    • 제57권4호
    • /
    • pp.461-471
    • /
    • 2013
  • Optimized geometrical structure, atomic charges, molecular electrostatic potential, nonlinear optical (NLO) effects and thermodynamic properties of the title compound N-(2,5-methylphenyl)salicylaldimine (I) have been investigated by using ab initio quantum chemical computational studies. Calculated results showed that the enol form of (I) is more stable than keto form. The solvent effect was investigated for obtained molecular energies, hardneses and the atomic charge distributions of (I). Natural bond orbital and frontier molecular orbital analysis of the title compound were also performed. The total molecular dipole moment (${\mu}$), linear polarizability (${\alpha}$), and first-order hyperpolarizability (${\beta}$) were calculated by B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets to investigate the NLO properties of the compound (I). The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450 K.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers

  • 이승구;이송희
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.897-904
    • /
    • 1999
  • We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.