• Title/Summary/Keyword: Thermodynamic approach

Search Result 78, Processing Time 0.02 seconds

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Extended Injectant Mole-Fraction Imaging of Supersonic Mixing using Acetone PLIF

  • Takahashi, Hidemi;Ikegami, Shuzo;Hirota, Mitsutomo;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.781-789
    • /
    • 2008
  • The fluorescence ratio method for processing planar laser induced fluorescence(PLIF) data was generalized for quantitative imaging of the injectant mole-fraction in supersonic mixing flowfields. The original fluorescence ratio approach was introduced by Hartfield et al. for tests in a special closed-loop wind tunnel to eliminate the effects of thermodynamic property variations in compressible flowfields and to provide a quantitative means of mole-fraction measurement. However, they implicitly assumed that the tracer molecules were seeded at the same fraction in both main and secondary flows. In the present study, we proposed generalizing the Hartfield method by considering differences in the tracer seeding rates. We examined the generalized method in a mixing flowfield formed by sonic transverse injection into a Mach 1.8 supersonic air stream. The injectant molefraction distribution obtained from PLIF data processed by our new approach showed better agreement with the gas chromatograph than one based on the Hartfield method.

  • PDF

Sorption of $UO^{2+}_2$ onto Goethite and Kaolinite: Mechanistic Modeling Approach

  • Jinho Jung;Lee, Jae-Kwang;Cho, Young-Hwan;Keum, Dong-Kwon;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.182-191
    • /
    • 1999
  • The sorption of UO$_{2}$$^{2+}$ onto goethite and kaolinite under various experimental conditions was successfully interpreted using surface complexation modeling (SCM). The SCM approach used in this work is the triple-layer model (TLM) in which weakly bonded ions are modeled as outer-sphere (ion-pair) complexes and strongly bonded ions as inner-sphere (surface coordination) complexes. The change of ionic strength did not affect the U(VI) sorption onto goethite, thus the formation of inner-sphere surface complexes, (FeO)$_2$UO$_2$ and (FeO)$_2$(UO$_2$)$_3$OH$_{5}$ was assumed to simulate the effects of ionic strength and goethite concentration. On the other hand, the U(VI) sorption onto kaolinite showed ionic strength dependence, thus the formation of AlO-UO$_{2}$$^{2+}$(outer-sphere complex) and SiO(UO$_2$)$_3$OH$_{5}$ (inner-sphere complex) was assumed to simulate the experimental data. In the presence of carbonates, the sorption of U(VI) onto kaolinite decreased in the weakly alkaline pH range. This was well simulated assuming the formation of a outer-sphere surface complex, A1OH$^{2+}$- (UO$_2$)$_2$CO$_3$OH$_3$. Since SCM approach uses thermodynamic data such as surface complexation constants, it is more predictive than empirical modeling approach in which conditional values such as partition coefficient are used. used.

  • PDF

Computer Simulation and Verification of Adiabatic Temperature and Apparent Activity Energy of the NiO/Al Aluminothermic System

  • Song, Yuepeng;Zhu, Yanmin;Gao, Dongsheng;Guo, Jing;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.332-337
    • /
    • 2013
  • Recently, self-propagating high-temperature synthesis (SHS), related to metallic and ceramic powder interactions, has attracted huge interest from more and more researchers, because it can provide an attractive, energy-efficient approach to the synthesis of simple and complex materials. The adiabatic temperature $T_{ad}$ and apparent activation energy analysis of different thermit systems plays an important role in thermodynamic studies on combustion synthesis. After establishing and verifying a mathematic calculation program for predicting adiabatic temperatures, based on the thermodynamic theory of combustion synthesis systems, the adiabatic temperatures of the NiO/Al aluminothermic system during self-propagating high-temperature synthesis were investigated. The effect of a diluting agent additive fraction on combustion velocity was studied. According to the simulation and experimental results, the apparent activation energy was estimated using the Arrhenius diagram of $ln(v/T_{ad}){\sim}/T_{ad}$ based on the combustion equation given by Merzhanov et al. When the temperature exceeds the boiling point of aluminum (2,790 K), the apparent activation energy of the NiO/Al aluminothermic system is $64{\pm}14$ kJ/mol. In contrast, below 2,790 K, the apparent activation energy is $189{\pm}15$ kJ/mol. The process of combustion contributed to the mass-transference of aluminum reactant of the burning compacts. The reliability of the simulation results was experimentally verified.

Shear Effects on Production of Lignin Peroxidase by Phanerochaete chrysosporium

  • Sang, Byeong-In;Kim, Yong-Hwan;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 1996
  • Since biosynthesis of lignin peroxidase from Phanerochaete chrysosporium was known to be sensitive to shear, it is interesting to understand the effects of the shear sensitivity for the overproduction of lignin peroxidase. In stirred-tank fermentor, the shear-sensitivity in lignin peroxidase biosynthesis was quantified by using Kolmogorov length scale. It was found that agitation at 80$\mu$m Kolmogorov length scale is advantageous for the production of lignin peroxidase from P. chrysosporium. To overcome the shear sensitivity in lignin peroxidase biosynthesis caused by the agitation,P. chrysosporium was immobilized on various solid carriers. The nylon-immobilized P. chrysosporium was chosen in the present study as a way to overcome the shear sensitivity at the ranges of above 50$\mu$m Kolmogorov length scale. The adhesion force between immobilized cell and carrier can be predicted by thermodynamic approach and used as a criteria to select an adequate carrier materials for immobilization.

  • PDF

Molecular dynamics simulation of bulk silicon under strain

  • Zhao, H.;Aluru, N.R.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.303-315
    • /
    • 2008
  • In this paper, thermodynamical properties of crystalline silicon under strain are calculated using classical molecular dynamics (MD) simulations based on the Tersoff interatomic potential. The Helmholtz free energy of the silicon crystal under strain is calculated by using the ensemble method developed by Frenkel and Ladd (1984). To account for quantum corrections under strain in the classical MD simulations, we propose an approach where the quantum corrections to the internal energy and the Helmholtz free energy are obtained by using the corresponding energy deviation between the classical and quantum harmonic oscillators. We calculate the variation of thermodynamic properties with temperature and strain and compare them with results obtained by using the quasi-harmonic model in the reciprocal space.

Modelling and Simulation of Rotary Compressor in Refrigerator (냉동기용 로터리 압축기의 모델링 및 시뮬레이션)

  • Park, Min-Woo;Chung, Youn-Goo;Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • This paper presents the modeling approach that can predict transient behavior of rotary compressor. Mass and energy conservation laws are applied to the control volume, real gas state equation is used to obtain thermodynamic properties of refrigerant. The valve equation is solved to analyze discharge process also. Dynamic analysis of vane and roller is carried out to gain friction work. From the above modeling, the performance of rotary compressor with radial clearance and friction loss is investigated numerically. The performance of each refrigerant is estimated, respectively by applying R12, R134a, and R290/ R600a mixture.

Theoretical Approach for Physicochemical Factors Affecting Human Toxicity of Dioxins (다이옥신의 인체 독성에 영향을 미치는 물리화학적 인자에 대한 이론적 접근)

  • 황인철;박형석
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.65-73
    • /
    • 1999
  • Dioxins refer to a family of chemicals comprising 75 polychlorinated dibenzo-p-dioxin (PCDD) and 135 polychlorinated dibenzo-p-furan (PCDF) congeners, which may cause skin disorder, human immune system disruption, birth defects, severe hormonal imbalance, and cancer. The effects of exposure of dioxin-like compounds such as PCBs are mediated by binding to the aryl hydrocarbon receptor (AHR), which is a ligand-activated transcription factor. To grasp physicochemical factors affecting human toxicity of dioxins, six geometrical and topological indices, eleven thermodynamic variables, and quantum mechanical descriptors including ESP (electrostatic potential) were analyzed using QSAR and semi-empirical AM1 method. Planar dioxins with high lipophilicity and large surface tension show the probability that negative electrostatic potential in the lateral oxygen may make hydrogen bonding with DNA bases to be a carcinogen.

  • PDF

The Relationship Between the Permeation Rate and the Solubility Parameter for Polyethylene-n-Hexane-Benzene System in Pervaporation (폴리에틸렌-n-헥산-벤젠계에 대한 투과속도와 용해도 파라메타 사이의 관계)

  • Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.136-139
    • /
    • 1993
  • It is well known that the membrane permeation in pervaporation is governed by both the chemical nature of the membrane material and the physical structure of the membrane and also the separation can be achieved by differences in either solubility, size or shape. The solubility of the penerrant in the polymeric membrane can be described qualitively by applying the Hildebrand relation [1] which relates the energy of mixing of the penerrant and the polymer material. Froehling et al. have tried to predict the swelling behavior of polymers for the systems of polyvinylchloride(PVC)-toluene-methanol, PVC-trichloroethylene-nitromethane and PVC-n-butylacetate-nitromethane[2]. The former two systems which do not show the donor/acceptor interactions upon mixing showed the successful results[2]. In addition to this technique, there are several other possible approaches to predict the swelling behaviors of polymers, such as the surface thermodynamic approach[3, 4], the comparison of the membrane polarity with the solvent polarity in terms of Dimroth's solvent polarity value[5].

  • PDF

Micro droplet driven by thermocapillary and capillary valve (열모세관에 의한 미소액적 구동과 모세관 밸브)

  • Lim, Nam-Hyuk;Kim, Sung-Wook;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1777-1782
    • /
    • 2003
  • This paper presents the design, fabrication, and testing of the capillary-induced pressure drop valve, thermocapillary pumping of liquid droplet in hydrophilic channels and the splitting of droplet. The capillaryinduced pressure drop is derived with thermodynamic approach considering three-dimensional meniscus shape which is essential for calculating pressure drop in the diverging shape channel when the aspect ratio is close to one. The micro channel is fabricated via MEMS processes, which consists of the liquid stop valve to retard the liquid droplet, thermocapillary pumping region and the bifurcation region. Also the micro heaters are fabricated to drive the droplet by thermocapillary. The theoretical approaches agree well with the experimental data. The functionality of capillary valve is confirmed to be valid when the aspect ratio is smaller than one. To overcome the difficulty in splitting of the droplet due to the pressure drop in the general Y-shape channel, the protrusion shape is employed for easy splitting in the bifurcation channel.

  • PDF