• 제목/요약/키워드: Thermocouples

검색결과 264건 처리시간 0.021초

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

미세패턴 성형을 위한 사출 압축 성형 공정 기술 (Injection/compression molding for micro pattern)

  • 유영은;김태훈;김창완;제태진;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.100-104
    • /
    • 2005
  • The injection molding is very effective process for various plastic products due to its high productivity. It is also good fur precise products like optical parts. Various thermoplastic materials are also available with this injection molding process. In recent, however, as the overall size of the product increases and micro or nano scale of patterns are applied to the products, we now have some problems such as low fidelity of the replication of the pattern, high molding pressure, or warpage from the in-mold stress. Injection/compression molding is studied to overcome those problems in molding large thin plate with micro pattern array on its surface. An injection compression mold is designed to 3 pieces mold for side gate. We install 4 pressure transducers and 9 thermocouples to measure the melt pressure and surface temperature in the cavity during the process. As a result, the maximum molding pressure for injection compression molding is reduced to 1/3 compared to injection molding and the uniformity of the pressure in the cavity is enhanced by about 15%.

  • PDF

주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구 (A Study on the Response Characteristics of Fire Detector by Full-scale Experiment of Fire Phenomena in the Row House)

  • 사공성호;김시국;이춘하;정종진
    • 한국화재소방학회논문지
    • /
    • 제23권3호
    • /
    • pp.67-72
    • /
    • 2009
  • 본 논문은 주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구로서 철거가 예정된 연립주택을 화재실험대상으로 선정하여 현재 가장 많이 사용되고 있는 감지기 종류인 열감지기(차동식, 정온식, 아날로그식)와 연기감지기(광전식, 아날로그식, 단독경보형)를 주택내부에 설치여 화재감지기의 응답특성을 분석하고, 추가적으로 건물내부로의 화염전파 및 화재확대를 관찰하기 위해 열전대를 설치하여 온도변화를 측정하였다. 실험결과 주택에서 효과적인 화재감지시스템을 구축하기 위해서는 연기감지기가 열감지기보다 주택용 감지기로 적합한 것으로 나타났다.

고압용기의 계장선 통과부위 밀봉기술 개발 (Development of Sealing Technology for Instrumentation Feedthrough of High Pressure Vessel)

  • 정황영;홍진태;안성호;정창용;이종민;이철용
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.137-143
    • /
    • 2011
  • Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. The In-Pile Test Section(IPS) installed in HANARO FTL is designed as a pressure vessel design conditions of $350^{\circ}C$, 17.5MPa. The instrumentation MI-cables for thermocouples, SPND and LVDT are passed through the sealing plug, which is in the pressure boundary region and is a part of instrumentation feedthrough of MI-cable. In this study, the brazing method and performance test results are introduced to the sealing plug with BNi-2 filler metal, which is selected with consideration of the compatibility for the coolant. The performance was verified through the insulation resistance test, hydrostatic test, and helium leak test.

Thermo-structural monitoring of RCC dam in India through instrumentation

  • Ashtankar, V.B.;Chore, H.S.
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.95-113
    • /
    • 2015
  • The knowledge of the behavior of any roller compacted concrete (RCC) dam and its foundation is gained by studying the service action of the dam and its foundation using measurements of an external and internal nature. The information by which a continuing assurance of structural safety of the RCC dam can be gauged is of primary importance. Similarly, the fact that the information on structural and thermal behavior and the properties of concrete that may be used to give added criteria for use in the design of future RCC dams is of secondary importance. Wide spread attention is now being given to the installation of more expensive instrumentation for studying the behavior of concrete dams and reservoirs and forecasting of any adverse trends. In view of this, the paper traces installation and need of the comprehensive instrumentation scheme implemented to monitor the structural and thermal behavior of 102.4 m high RCC dam constructed near Mumbai in India. An attempt is made in the present paper to emphasize the need to undertake an instrumentation program and evaluate their performance during construction and post construction stage of RCC structures. Few typical results, regarding the thermal and structural behavior of the dam, obtained through instrumentation installed at the dam site are presented and compared with the design considerations. The fair agreement is seen in the response observed through instrumentation with that governing the design criteria.

스택의 채널 수에 다른 열음향파의 특성 비교 연구 (A Comparative Study on the Characteristics of Thermoacoustic Waves by the Stack Channel Number)

  • 박성식;천원기;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.8-14
    • /
    • 2013
  • The conversion of solar energy into acoustic waves is experimentally studied. Measurements were made on the Sound Pressure Level(SPL), onset time and the temperature gradient across the stack, with the Cell Per Square Inch(CPSI) of stack changed. A pyrex resonance tube is used with a honey-comb structure ceramic stack along with Ni-Cr and Cu wires. An AL1 acoustical analyzer was used to measure the SPL and frequency of acoustic waves whereas K-type thermocouples were hired to estimate temperature gradients. As a result, when the supply electric power was 25W, maximum SPLs of 104.1 dB, 109.4 dB and 112.8 dB were detected for the stacks of 200, 300 and 400 CPSI and their respective stack positions of 70mm, 60mm and 50mm from the closed end.

그루브형 히트파이프를 갖는 이중진공관형 태양열 집열기의 열전달특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Characteristics of a Grooved Heat Pipe for Solar Collector)

  • 김병기;정경택;장환영;서정세
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.965-969
    • /
    • 2006
  • This study investigated heat transfer characteristics between absorber and heat pipe used to extract heat from concentric evacuated tubular collectors. In order to experiment, T-type thermocouples are attached to a evaporator of heat pipe and absorber of inner tube. A wall temperature distribution of absorber and heat pipe were carried out by experimental method under actual various ir-radiance and outdoor conditions. As a result, As to increase an irradiance, a wall temperature of absorber and heat pipe is gradually increased. The heat pipe was required about 20min to obtain steady state operation after start up and operates stable during various irradiance conditions. And the collector efficiency was about $50{\sim}70%$ when a mass flow rate is about $1.3{\ell}/min$.

  • PDF

핵 연료 요소내의 접촉 열전도도 측정 (Measurement of The Thermal Contact Conductance in Nuclear Fuel Element)

  • ;윤병조
    • Nuclear Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.75-81
    • /
    • 1990
  • 핵연료봉내의 온도 분포를 결정하는데 있어서 중요한 핵연료소자와 피복판 사이의 접촉 열전도도를 결정하기 위한 실험을 수행하였다. 이 실험에 사용된 측정장치는 접촉압력을 임의로 변화시켜 줄 수 있는 가압기와 열전대, 진공펌프, 핵연료소자, 봉형태의 피복관, 그리고 두 개의 히터 등으로 구성되어 있다. 접촉 열전도도는 $UO_2$ 소자와 Zircaloy-2 피복관 사이의 접촉 압력과 표면 조도를 변화시키면서 측정하였다. 그 결과 두 물체사이의 접촉압력이 증가함에 따라, 그리고 표면이 매끄러울수록 접촉 열전달계수는 증가하였다. 실험에서 얻은 값을 가지고 상관식을 만들었으며 일반적으로 사용되고 있는 상관식과 비교하였다.

  • PDF

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.