• Title/Summary/Keyword: Thermocouples

Search Result 265, Processing Time 0.032 seconds

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Deformation of a mold for large area UV-nanoimprint lithography in alignment and curing processes (UV 나노임프린트리소그래피의 정렬 공정 중 몰드의 변형해석)

  • Park, In-Soo;Won, Chong-Jin;Yim, Hong-Jae;Jeong, Jay-I.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1939-1943
    • /
    • 2008
  • Deformation of a mold is measured and analyzed in alignment and curing processes of UV-Imprint Lithography. We are focused on mold deformation caused by a UV resin, which is laminated between a mold and a target glass-panel. The UV resin is viscous in case of liquid state, and the resin will be solidified when being exposed by the ultra-violet light. The viscosity of the resin causes shear force on the mold during the alignment process. Moreover, the shrinkage during phase change from liquid to solid may cause residual stress on the mold. The experiments for measuring temperature and strain are made during alignment and curing process. Strain-gages and thermocouples are used for measuring the strain and variation of temperature on several points of the mold, respectively. The deformation of mold is also simulated and analyzed. The simulation results are compared with the experiments. Finally, sources of alignment errors in large area UV-nanoimprint lithography are discussed.

  • PDF

NUMERICAL SIMULATION OF THERMAL CONTROL OF A HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY MACHINES (고온 나노임프린트 장비용 핫플레이트의 열제어에 대한 수치모사)

  • Park, G.J.;Kwak, H.S.;Shin, D.W.;Lee, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.153-158
    • /
    • 2007
  • Since the introduction of Nanoimprint in the mid-1990s, Nanoimprint lithography, a low-cost, non-convential method, has been the dominant lithography technology that guarantees high-throughput patterning of nanostructures. Based on the mechanical embossing mechanism, Nanoimprint lithography creates the nanopatterns on the polymer material cast on the substrate. In essence, the process needs nanofabrication equipment for printing with the adequate control of temperature, pressure and control of parallels of the stamp and substrate. This article introduce the possibility and reality of the thermal control on the hot plate using a CFD code. Numerical computation has been conducted for assessing the feasibility of a hot plate($120{\times}120\;mm2$). PID control is adopted to ensure high temperature uniformity in several zones. Parallel experiments have also been performed for verifying thermal performance. Not only show the results the optimum number of thermocouples related to controllers but also suggest that the thermal simulation using a CFD code would be an alternative method to design and develop the thermal control equipment in the financial aspect.

  • PDF

Effects of Spray Characteristics of Water Mist on The Extinction of a Liquid Pool Fire (분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Kim, Ho-Young;Oh, Sang-Youp;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1591-1599
    • /
    • 2004
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is a small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is l15∼180${\mu}{\textrm}{m}$ with nozzle A and 130∼190${\mu}{\textrm}{m}$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of $O_2$ concentration.

The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire (미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Oh, Sang-Youp;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

Structure and Suppression of Nonpremixed Counterflow Flames (비예혼합 대향류화염의 구조와 소화)

  • Anthony Hamins;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • Measurements with filaments and thermocouples and computations with Oppdif and FDS were carried out to investigate the impact of flame strain, agent addition, and buoyancy on the structure and extinction of nonpremixed counterflow flames. Measurements through 2.2 s drop tests in microgravity conditions and experiments in normal gravity conditions were compared with the results of computations. For the global strain rates 7 s$^{-1}$ through 100 s$^{-1}$ , the turning point behavior in the critical nitrogen concentration at O-g was confirmed. The effects of buoyancy, that is, changes in the flame curvature and thickness were also confirmed by the computations with FDS. There was agreement in the peak flame temperature and its position between the computations and the measurements in the near extinction methane/air diffusion flames in microgravity.

An Experimental Study on the Effect of the Balcony on the Vertical Smoke Movement of the High Rise Building (고층건물의 수직방향 연기거동에 미치는 발코니의 영향에 관한 실험적 연구)

  • Yang Seung-Shin;Kim Sung-Chan;Ryou Hong-Sun;Shim Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.42-48
    • /
    • 2005
  • The present study investigates the effect of balcony on external smoke movement of high rise building through the fire tests of the 1/10 reduced model scale using Froude scaling. A hexane pool fire is used to examine the smoke movement for various opening sizes of balcony and temperature distributions are measured by T-type thermocouples. Also, hydrogen bubble technique is applied to visualize the smoke movement near the balcony. Measured temperatures of the closed balcony is 2.5 times higher than those of the open balcony because the external smoke in case of the closed balcony rise along the vertical wall. The maximum vertical temperature of partially closed balcony is similar with fully closed balcony and mean temperature inside of balcony increases as opening size of balcony decreases. The experimental results show that the balcony space plays an important roles in preventing fire propagation and cooling of smoke layer. In order to ensure the fire safety in high rise building design, a series of systematic researches are required to examine the various type of balconies.

A Study of Laser Joining for Polymer 2D Camber Compensation (폴리머 2D 캠버 보상을 위한 레이저용접 기술)

  • Lee, Young-Min;Yoon, Jin-Young;Song, Chi-Hun;Choi, Hae-Woon
    • Laser Solutions
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • A novel joining technology was developed to compensate the camber in polymers. The preheating laser beam circulates on the joining location and the accumulated heat serves to increase the flexibility of neighboring polymers. The temperature rises up to the glass transient temperature of the polymers and continually loading spring force closes the gap of camber. The irradiated laser was 808nm central wavelength and the power varied between 2Watt and 5Watt. The laps were adjusted between 3 and 10 and the optimum process parameters were 3Watt and 5 laps for the specific application. An FEM analysis was introduced to understand the mechanism of joining by the transient temperature distribution on the polymers. Thermocouples experiments were also tried to correlate the numerical analysis results and it showed the trend of heat accumulation in experiments.

  • PDF

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Development of Cu-Ni Binary Alloys for Room Temperature Compensation of Pt/Pd Thermocouple (Pt/Pd 열전대의 실온보상을 위한 Cu-Ni 합금 개발)

  • Kim, Yong-Gyoo;Kang, Kee-Hoon;Gam, Kee-Sool;Lee, Young-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.405-410
    • /
    • 2004
  • Compensation wires for Pt/Pd thermocouple was manufactured using Cu/Ni alloys. Their thermoelectric voltage has been tested from room temperature to about $150^{\circ}C$. Alloys of $Cu_{95.5}Ni_{4.5}$ and $Cu_{89.5}Ni_{10.5}$ introduced only small emf differences to Pt/Pd thermocouples, indicating a real possibility of industrial use. Above $1000^{\circ}C$, the temperature difference was expected to he small as ${\pm}0.5^{\circ}C$, and the difference would be minimized by adjusting the Ni content with a small amount.