• Title/Summary/Keyword: Thermocline region

Search Result 38, Processing Time 0.022 seconds

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -III. Chemical Characteristics of Water Masses in the Polar Front Area of the Central Korean East Sea- (한반도 근해의 해류와 해수특성 -III. 한국 동해 중부 극전선역에 출현하는 수괴의 화학적 특성-)

  • YANG Han-Soeb;KIM Seong-Soo;KANG Chang-Geun;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 1991
  • The vertical distribution and chemical characteristics of water masses were measured along two south-north transects in the polar front region of the central Korean East Sea. In February, a thermocline was present at depth between 50m and loom at the southern sites of a landward A-transect, and its depth was gradually deepened northward. At an outside B-transect, a thermocline was observed at significantly deep depth of 300m to 400m at two northern stations(Stn. 10 and 11), though the depth of the southward stations was nearly identical to that at the northward stations on a A-transect. In September, there were vertically more various water masses, i.e. the Tsushima Warm surface water(TWSW) or more than $20^{\circ}C$, the Tsushima Middle water(TMW) with a range of $12{\~}17^{\circ}C$, the North Korea Cold Water(NKCW) with $1{\~}7^{\circ}C$ temperature, the Japan Sea Proper Water(JSPW) of less than $1^{\circ}C$, and the mixed water. The North Korea Cold Water could be distinguishable from the other waters, especially from the mixed water of the Tsushima Middle Water and the Japan Sea Proper Water by the pattern of $T-O_2$ diagram. For instance, the North Korea Cold Water had higher oxygen by $1{\~}2ml/l$ than those in the mixed water, although both the two water masses ranged $1{\~}7^{\circ}C$ in water temperature. AOU value was the highest in the JSPW and the lowest in the TWSW. Also, AOU indicated a nearly linear and negative correlation with water temperature. However, AOU data for two masses, the NKCW and the TMW, in September departed remarkably from a regression line. Moreover, the ratio of $$\Delta P/\Delta AOU)$ in September was about $0.45{\mu}g-at/ml$ and higher than the value observed in the open sea. This high value could be elucidated by two factors; intrusion of the NKCW with high oxygen and molecular diffusion of dissolved oxygen from the surface into the lower layer. AOU would be a useful tracer for water masses in the polar front area of the Korean East Sea.

  • PDF

The Relationship between the Fishing Grounds and Oceanographic Condition Associated with Fluctuation of Mackerals Catches in the East China Sea (고등어 어획량 변동에 따른 동지나해의 어장과 해황)

  • Jo, Gyu-Dae;Hong, Cheol-Hun;Kim, Yong-Mun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.83-90
    • /
    • 1984
  • The secular fluctuations of catches and fishing grounds of mackerals and the oceanographic conditions for the fishing grounds are examined by using the data of catches of mackerals by middle and large class purse-seiner during 1951 to 1981 and those of oceanographic observation carried out by Japan Meteorological Agency. The results are as follows; The fishing grounds of mackerals are respectively distributed at northeastern and southwestern areas from the central part of the East China Sea through every season of the studied years: 1968, 1974 and 1980. The narrow belt type of fishing grounds were formed inside of the Kuroshio in spring and winter of the three years. In summer mackeral species move northward and the fishing grounds are formed in the southern sea of Korea. In winter, however, mackeral species move southward and the fishing grounds are appeared in the Tsushima Current region. The dispersion of fishing grounds is generally larger in summer and smaller in spring, and especially it is the largest in summer in 1980. It seems that the concentration and dispersion of fishing grounds are related to the depth of thermocline and the position of horizontal temperature gradient in this area.

  • PDF

The Characteristics of Fishing Ground in the Adjacent Sea of Naro Island (1) - Oceanic Condition of Fishing Ground - (나로도 주변해역의 어장학적 특성 (1) - 어장의 해황 변화 -)

  • 김동수;주찬순;박주삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.8-18
    • /
    • 2003
  • In order to investigate the oceanic condition of fishing ground in the adjacent sea of Naro Island, the oceanographic observation were carried out by the training vessel of Yosu National University on winter, spring, summer, and autumn in 2000. Main features in the observation are as follows; 1) the ranges of temperature, salinity, and chlorophyll-a were from 4.$3\circ_C$ to 10.$1\circ_C$, from 33.1 psu to 34.9 psu, and from 0.1 $ug$/$\Omega$ to 26.2 $ug$/$\Omega$ in winter, from 8.$1\circ_C$ to 13.$7\circ_C$, from 33.1 psu to 34.3 psu, and from 0.1 $ug$/$\Omega$ to 24.4 $ug$/$\Omega$ in spring, from 14.$5\circ_C$ to 24.$2\circ_C$, from 30.5 psu to 34.1 psu, and from 0.1 $ug$/$\Omega$ to 30.0 $ug$/$\Omega$ in summer, and from 14.$8\circ_C$ to 18.$6\circ_C$, from 30.1 psu to 34.0 psu, and from 0.1 $ug$/$\Omega$ to 19.1 $ug$/$\Omega$ in autumn, respectively, 2) the temperature in the coastal region was higher than that in the open ocean while salinity was lower, and the convection was identified between the surface and the bottom during in winter and autumn, and the thermocline were made between surface and 20m layer with vertical gradients of 4.$0\circ_C$/7m in summer, 3) the chlorophyll-a in the this region was varied in each season, being highly distributed in spring, on bottom and coastal region, and 4) an evidence of sea water intrusion toward Sori Island was observed, and of inner water intrusion from Yeoja Bay was observed.

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019 (2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원)

  • DOHYEOP YOO;JONG-KYU KIM;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.19-40
    • /
    • 2023
  • To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

Distribution Characteristics of $^{210}Po$ and $^{210}Pb$ in the Seawater from the Korean East Sea in Spring (봄철 동해에서 해수중 $^{210}Po$$^{210}Pb$의 농도분포특성)

  • YANG Han-Soeb;KIM Soung-Soo;LEE Jae-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.238-245
    • /
    • 1996
  • Vertical profiles of $^{210}Po\;and\;^{210}Pb$ were measured for the upper 100 m of water column at six stations in the middle region of the Korean East Sea during March 1993. The distribution patterns of these radionuclides with the water mass and controlling factors on their distributions were also discussed. $^{210}Pb$ activities were generally high at surface water and gradually decrease with depth. Vertical profiles of $^{210}Po$ were relatively homogeneous except for at station E3, where chlorophyll-a concentration was the highest and $^{210}Po$ activity in the upper 30 m was lower than below 50 m. The $^{210}Po$ activities relative to its parent $^{210}Pb$ at all stations were deficient at the upper 30 m, but were excess or nearly equilibrated values below 50 m. The magnitude of $^{210}Po$ deficiency was relatively high at station E3 and E6, where strong thermocline occured. However, $^{210}Pb$ activities showed strong excess in the upper 100 m of all stations, compared with its parent $^{226}Ra$. The residence time of $^{210}Po$ ranged from 1.0 to 7.8 years, and was relatively short at station E3 and E6. The data obtained at the upper 50 m water column during $1992\~1994$, also showed that removal rate constant of $^{210}Po$ and inventories of chlorophyll-a was negatively related. This indicates that the primary production plays an important role in controlling the distributions of $^{210}Po$ at the upper water column of the Korean last Sea in spring. While, inventories of excess $^{210}Pb$ was generally decreasing with increasing density difference between 50 m and 100 m, suggesting that $^{210}Pb$ concentrations in the upper water column were controlled by stability of water column.

  • PDF

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea 1. Relationships between Water Mass and Nutrient Distribution Pattern in Autumn (동해 극전선역의 영양염류 순환과정 1. 추계 수괴와 영양염 분포와의 관계)

  • Moon Chang-Ho;YANG Han-Soeb;LEE Kwang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.503-526
    • /
    • 1996
  • A synoptic survery of chemical characteristics in the last Sea of Korea was carried out at the 11 stations near Ullungdo in November, 1994 on board R/V Tam-Yang. On the basis of the vortical distribution patterns of temperature, salinity and dissolved oxygen, water masses in the study area are divided into five groups; 1) Tsushima Surface Water (TSW), 2) Tsushima Middle Water (TMW), 3) East Sea Intermediate Water (ESIW), 4) last Sea Proper Water (ESPW), 5) Mixed Water (MW). In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly near the thermocline. There was a slight decrease in the ESIW and the concentrations were constant with the depth below 300m except dissolved silicate which still increased with depth. Relatively high value of Si/P ratio (25.2) in ESPW, whick is the oldest water mass, suggests that Si is regenerating more slowly compared to other nutrients. The relatively high value of N/P ratio (18.6) in the surface layer might be related to high vertical eddy diffusivity $(K_z)$ of $1.19\;cm^{2}/sec$ and high nitrate upward flux of $103.7\;{\mu}g-at/m^{2}/hr$, compared to the values reported in other areas. Apparent Oxygen Utilization (AOU) was very low in the surface layer and increased in the TMW, but there was a slight decrease in the ESIW. The highest value of AOU occurred in the ESPW. The slpoe of P/AOU was 0.50. The study on the relationship between water masses and nutrient distribution patterns is important in understanding the regeneration processes of nutrients in the polar region of the last Sea.

  • PDF

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF