• 제목/요약/키워드: Thermo-solutal convection

검색결과 5건 처리시간 0.018초

Influence of thermo-physical properties on solutal convection by physical vapor transport of Hg2Cl2-N2 system: Part I - solutal convection

  • Kim, Geug-Tae;Kim, Young-Joo
    • 한국결정성장학회지
    • /
    • 제20권3호
    • /
    • pp.125-132
    • /
    • 2010
  • For typical governing dimensionless parameters of Ar = 5, Pr = 1.16, Le = 0.14, Pe = 3.57, Cv = 1.02, $Gr_s=2.65{\times}10^6$, the effects of thermo physical properties such as a molecular weight, a binary diffusivity coefficient, a partial pressure of component B on solutally buoyancy-driven convection (solutal Grashof number $Gr_s=2.65{\times}10^6$) are theoretically investigated for further understanding and insight into an essence of solutal convection occurring in the vapor phase during the physical vapor transport of a $Hg_2Cl_2-N_2$ system. The solutally buoyancy-driven convection is significantly affected by any significant disparity in the molecular weight of the crystal components and the impurity gas of nitrogen. The solutal convection in a vertical orientation is found to be more suppressed than a tenth reduction of gravitational accelerations in a horizontal orientation. For crystal growth parameters under consideration, the greater uniformity in the growth rate is obtained for either solutal convection mode in a vertical orientation or thermal convection mode in horizontal geometry. The growth rate is also found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

Effects of impurity (N2) on thermo-solutal convection during the physical vapor transport processes of mercurous chloride

  • Kim, Geug-Tae;Kim, Young-Joo
    • 한국결정성장학회지
    • /
    • 제20권3호
    • /
    • pp.117-124
    • /
    • 2010
  • For Ar=5, Pr=1.18, Le=0.15, Pe=2.89, Cv=1.06, $P_B$=20 Torr, the effects of impurity $(N_2)$ on thermally and solutally buoyancy-driven convection ($Gr_t=3.46{\times}10^4$ and $Gr_s=6.02{\times}10^5$, respectively) are theoretically investigated for further understanding and insight into an essence of thermo-solutal convection occurring in the vapor phase during the physical vapor transport. For $10K{\leq}{\Delta}T{\leq}50K$, the crystal growth rates are intimately related and linearly proportional to a temperature difference between the source and crystal region which is a driving force for thermally buoyancy-driven convection. Moreover, both the dimensionless Peclet number (Pe) and dimensional maximum velocity magnitudes are directly and linearly proportional to ${\Delta}T$. The growth rate is second order-exponentially decayed for $2{\leq}Ar{\leq}5$. This is related to a finding that the effects of side walls tend to stabilize the thermo-solutal convection in the growth reactor. Finally, the growth rate is found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

Generic studies on thermo-solutal convection of mercurous chloride system of ${Hg_2}{Cl_2}$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제19권1호
    • /
    • pp.39-47
    • /
    • 2009
  • The effects of thermo-solutal convection on mercurous chloride system of ${Hg_2}{Cl_2}$, and Ne during physical vapor transport are numerically investigated for further understanding and insight into essence of transport phenomena, For $10\;K{\le}{\Delta}T{\le}30\;K$, the growth rate slowly increases and, then is decreased gradually until ${\Delta}T$=50 K, The occurrence of this critical point near at ${\Delta}T$=30 K is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. For the range of $10\;Torr{\le}P_B{\le}300\;Torr$, the rate is second order-exponentially decayed with partial pressures of component B, $P_B$. For the range of $5{\le}M_B{\le}200$, the rate is second order-exponentially decayed with a function of molecular weight of component B, $M_B$. Like the case of a partial pressure of component B, the effects of a molecular weight arc: reflected through the binary diffusivity coefficients, which are intimately related with suppressing the convection flow inside the growth enclosure, i,e., transition from convection to diffusion-dominant flow mode as the molecular weight of B increases. The convective mode is near at a ground level, i,e., on earth (1 $g_0$), and the convection is switched to the diffusion mode for $0.1\;g_0{\le}g{\le}10^{-2}g_0$, whereas the diffusion region ranges from $10^{-2}g_0$ up to $10^{-5}g_0$.

Ground-based model study for spaceflight experiments under microgravity environments on thermo-solutal convection during physical vapor transport of mercurous chloride

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.256-263
    • /
    • 2007
  • For $P_B=50Torr,\;P_T=5401Torr,\;T_S=450^{\circ}C,\;{\Delta}T=20K$, Ar=5, Pr=3.34, Le=0.01, Pe=4.16, Cv=1.05, adiabatic and linear thermal profiles at walls, the intensity of solutal convection (solutal Grashof number $Grs=7.86{\times}10^6$) is greater than that of thermal convection (thermal Grashof number $Grt=4.83{\times}10^5$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B (He). With increasing the partial pressure of component B from 20 up to 800 Torr, the rate is decreased exponentially. It is also interesting that as the partial pressure of component B is increased by a factor of 2, the rate is approximately reduced by a half. For systems under consideration, the rate increases linearly and directly with the dimensionless Peclet number which reflects the intensity of condensation and sublimation at the crystal and source region. The convective transport decreases with lower g level and is changed to the diffusive mode at $0.1g_0$. In other words, for regions in which the g level is $0.1g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than $0.1g_0$ can be adequate to ensure purely diffusive transport.

열농도대류를 고려한 연속주조공정의 수치해석 (Numerical analysis of the continuous casting process in the presence of thermo-solutal convection)

  • 정재동;유호선;이준식
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.445-456
    • /
    • 1997
  • Continuous casting process is numerically analyzed using the continuum model in a non-orthogonal coordinate system. Flow damping in the mush is modeled by combining the viscosity dependence on liquid fraction in dilute mush and the permeability dependence on liquid fraction in concentrated mush. The effect of turbulence is indirectly considered by effective diffusivity determined elsewhere by experiment. The main objective is to investigate the effects of casting parameters such as casting speed and tundish superheat on the distribution of surface temperature, shell thickness, metallurgical length and centerline segregation. Some of the computed results are compared with available experiments, and reasonable agreements are obtained.