• Title/Summary/Keyword: Thermo-mechanically affected zone

Search Result 15, Processing Time 0.02 seconds

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

Control of Grain Size on Friction Stir Welded AZ31 and AZ91 (AZ31과 AZ91의 마찰교반용접부 결정립 크기 제어)

  • Gwon, Gi-Su;Lee, Chang-U;Kim, Mok-Sun;Sato, Yutaka S.;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.328-331
    • /
    • 2007
  • It was carried out to evaluate microstructure and mechanical properties of friction stir welded(FSW) on magnesium alloys. Two types magnesium alloy was used in this work, AZ31 wrought and AZ91 cast magnesium alloy. Microstructure near the weld zone showed general weld structures such as stir zone(SZ), thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ). In the AZ91 alloy, the SZ had a fine grain size and $\beta$ phase particles which were well distributed in matrix. It was characterized to redistribute by partial or full re-solution of the $\beta$ phase which is coarse in base metal during FSW processing. The hardness of the SZ slightly increase than the base metal in AZ31 Mg alloy.

  • PDF

Joint properties and Interface Analysis of Friction Stir Welded Dissimilar Materials between Austenite Stainless Steel and 6013 Al Alloy (마찰교반접합한 오스테나이트계 스테인리스강과 6013알루미늄 합금 이종 접합부의 접합 특성 및 계면 성질)

  • Lee, Won-Bae;Biallas, gehard;Schmuecker, Martin;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.61-68
    • /
    • 2005
  • Dissimilar joining of Al 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side were composed of the heat affected zone and the plastically deformed zone, while those in the Al alloy side were composed of the recrystallized zone including stainless steel particles, the thermo-mechanically affected zone and the heat affected zone. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained Al alloy with lamella structure and intermetallic compound layer. Thickness of the intermetallic layer was approximately 300nm and was identified as the A14Fe with hexagonal close packed structure. Mechanical properties, such as tensile and fatigue strengths were lower than those of 6013 Al alloy base metal, because tool inserting location was deviated to Al alloy from the butt line, which resulted in the lack of the stirring.

Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy (5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

Friction Welding of Casted SCM440 and Sintered F-05-140 Dissimilar Steels and Their Joint Properties under Various Welding Conditions (SCM440 주조재와 F-05-140 소결재의 이종재료 마찰용접 및 공정 조건에 따른 접합 특성 연구)

  • Jisung Lee;Hansung Lee;Eunhyo Song;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.31 no.5
    • /
    • pp.414-421
    • /
    • 2024
  • Friction welding, which uses heat and plastic flow to join metals, is expanding across industries due to its ability to weld heterogeneous alloys and simple process. However, process research is essential for materials with complex geometries, and limited research has been conducted on friction welding between cast and sintered metals. This study analyzed the mechanical properties and microstructural evolution of the joint by controlling the rotational speed and friction pressure, which affect the removal of the heat-affected zone in friction welding of casted SCM440 and sintered F-05-140. Hardness mapping and microstructure observations with material transition were performed to investigate the correlation between phase behavior and welding conditions. These results are anticipated to reduce costs and improve the mechanical properties of key mobility components.

Mechanical Characteristics and Microstructure on Friction Stir Welded Joints with 6061-T6 Aluminium Alloy (알루미늄합금 6061-T6의 마찰교반용접 조건에 따른 기계적특성 및 용접부 조직평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.693-699
    • /
    • 2009
  • This paper shows mechanical properties and behaviors of macro- and micro-structures on friction stir welded specimen with 6061-T6 aluminum alloy plate. It apparently results in defect-free weld zone jointed at welding conditions like the traverse speed of 267mm/min, tool rotation speed of 2500rpm, pin inserted depth of 4.5mm and tilting angle of $2^{\circ}$ with tool dimensions such as tool pin diameter of 5mm, shoulder diameter of 15mm and pin length of 4.5mm. The tensile stress ${\sigma}_T=228MPa$ and the yield point ${\sigma}Y=141MPa$ are obtained at the condition of traverse speed of 267mm/min and tool rotation speed of 2500rpm. With the constant rotation speed, the higher traverse speed become, the higher tensile stress and yielding point become. Vickers hardness for welding zone profile were also presented.

Impact Toughness and Softening of the Heat Affected Zone of High Heat Input Welded 390 MPa Yield Strength Grade TMCP Steel (항복강도 390 MPa급 가공열처리강 대입열용접 열영향부 충격인성 및 연화현상)

  • Bang, Kook-Soo;Ahn, Young-Ho;Jeong, Hong-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.796-804
    • /
    • 2018
  • The Charpy impact toughness of the heat affected zone (HAZ) of electro gas welded 390 MPa yield strength grade steel, manufactured by a thermo mechanically controlled process, was investigated. The effects of added Nb on the toughness of the steel and the factors influencing scatter in toughness are discussed in the present work. It was observed that adding Nb to the steel led to the deterioration of HAZ toughness. The presence of soluble Nb in the HAZ increased its hardenability and resulted in a larger amount of low toughness bainitic microstructure. Microstructural observations in the notch root area revealed the significant role of different microstructures in the area. In the presence of a larger amount of bainitic microstructures, the HAZ exhibited a lower Charpy toughness with a larger scatter in toughness. A softened zone with a lower hardness than the base metal was formed in the HAZ. However, theoretical analysis revealed that the presence of the zone might not be a problem in a real welded joint because of the plastic restraint effect enforced by surrounding materials.

Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W (Al 7075의 마찰교반 용접부 특성에 관한 연구)

  • Jang Seok-Ki;Jeon Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • This paper shows mechanical Properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool dimensions with $6.35mm_t$ aluminum 7075-T651 alloy plate. It apparently results in defect-free weld zone in case transition speed was changed to 15mm/min 61mm/min and 124mm/min under conditions of tool rotation speed such as 800rpm. 1250rpm and 1600rpm respectively with tool's Pin diameter 40mm and 60mm. The optimum mechanical property, ultimate stress,${\sigma}_Y=470Mpa$ is obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin. shoulder dia. $20{\phi}mm$ pin dia. $6{\phi}mm$ and pin length 6mm. The full-screw type and the half-screw type pin shows the similar behaviors of weldability. It is found that the size of nugget is depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.