• 제목/요약/키워드: Thermo-mechanical performance

검색결과 153건 처리시간 0.026초

An experimental study on thermal storage characteristics in the thermally stratified water storage system (성층 축열 시스템에서의 열 저장 특성에 관한 실험적 연구)

  • Koh, J.Y.;Kim, Y.K.;Lee, C.M.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • 제21권4호
    • /
    • pp.37-46
    • /
    • 2001
  • This study describes the experimental study that focuses on the effects that distributor shapes and flow rate variations have an influence on the stratification in a rectangular thermal storage tank. Experiments were carried out under the conditions that the flow rates of working fluid are 20, 10 and $5\ell$/min. The storage tank is initially filled with chilled water of $1^{\circ}C$, and is extracted through the bottom at the same rate as the return warm water from load is entered through the distributor at the top of the tank. The thermo-cline forms at the top of the storage tank as the warm water enters the tank from the load through the distributor and the thermo-cline thickness increases with time. Emphasis is given to the effects of mixing at the inlet that increases the thermo-cline decay Flow rate variation and inlet distributor shapes are the important parameters in deciding the performance of a storage system. Stratification degree increases with decreasing in inlet flow rate under $10\ell$/min. Experiments shows that better thermal stratification can be obtain using the distributor to limit momentum mixing at the inlets and outlets. Also, 12% of improvement in the thermal energy usage has been achieved using the modified distributor discharging same flow rate in each lateral ports.

  • PDF

Reliability Enhancement of Anisotropic Conductive Adhesives Flip Chip on Organic Substrates by Non-Conducting Filler Additions

  • Paik, Kyung-Wook;Yim, Myung-Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.9-15
    • /
    • 2000
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt. %). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACAs composites with different content of non-conducting fillers, dynamic scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechanical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in tile content of filler brought about the increase of Tg$^{DSC}$ and Tg$^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significant affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.ers.

  • PDF

Reliability Enhancement of Anisotropic Conductive Adhesives Flip Chip on Organic Substrates by Non-Conducting Filler Additions

  • Paik, Kyung-Wook;Yim, Myung-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 2000
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACAs composites with different content of non-conducting fillers, dynamic scanning calorimeter (DSC), and thermo-gravimetric analyser (TGA), dynamic mechanical analyzer (DMA), and thermo-mechanical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of $Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • 제31권4호
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS

  • Stan, Marius
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.39-52
    • /
    • 2009
  • Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.

Effects of Design Parameters on the Thermal Performance of a Brushless DC Motor (BLDC 모터의 열적 성능에 대한 설계 인자의 영향)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제32권2호
    • /
    • pp.141-148
    • /
    • 2008
  • A numerical simulation of brushless DC motor is performed to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet. Recirculation zone exists in the tiny interfaces between windings. The flow separation causes poor cooling performance in bearing part and therefore the redesign of the bearing groove is required. The design parameters such as the inlet location, geometry and bearing groove threshold angle have been selected in the present simulation. As the inlet location moves inward in the radial direction, total incoming flow rate and heat transfer rate are increased. Total incoming flow rate is increased with increasing the inlet inner length. The effect of the bearing groove threshold angle on the thermal performance is less than that of other design parameters.

Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy (주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

Evaluation of Wear Chracteristics for $Al_2O_3-40%TiO_2$Sprayed on Casted Aluminum Alloy (주조용 알루미늄 합금의 $Al_2O_3-40%TiO_2$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.39-45
    • /
    • 1999
  • The wear behavior of $Al_2$O$_3$-40%TiO$_2$deposited on casted aluminum alloy (ASTM A356) by APS (Air Plasma Spray) against SiC ball has been investigated in this work. Wear tests were carried out at room temperature. The friction coefficient of $Al_2$O$_3$-40%TiO$_2$coating is lower than that of pure $Al_2$O$_3$coating(APS). $Al_2$O$_3$-40%TiO$_2$coating indicated the existence of the optimal coating thickness. It is found that voids and pores of coating surface resulted in the generation of cracks, and the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tension and compression under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. The crack propagation above interface is observed in SEM.

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • 제24권7호
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.