• Title/Summary/Keyword: Thermo-mechanical behavior

Search Result 277, Processing Time 0.025 seconds

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

Effect of Heat Treatment on the Martensitic Transformation and Tensile Deformation Behavior in Ti-Ni-B shape Memory Alloy (Ti-Ni-B 형상기억합금의 마르텐사이트변태 및 인장변형거동에 미치는 열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Ahn, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The purpose of this study is to investigate the effect of heat treatments on the martensite transformation and tensile deformation behavior in Ti-Ni-B alloys with various boron concentration. Three types of heat treatment are given to the specimens; i) solution treatment ii) aging iii) thermo-mechanical treatment. In solution treated specimens. R-phase transition which is related to abnormal increase of electrical resistance prior to martensitic transformation has been formed at a boron content of 0.2at % and the $M_s$ temperature has been decreased with the increasing of boron content. However. It has not been affected by aging, while that of thermo-mechanically treated specimens has been remarkably increased in the vicinity of recrystallization temperature. The thermo-mechanically treated specimen has showed a good thermal fatigue characteristics, shape memory effect and superelasticity in comparison with the solution treated specimen.

  • PDF

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

Prediction of Recrystallization behaviors in Hot Forging by the Finite Element Method (열간단조공정중 강의 재결정거동 유한용소해석)

  • 곽우진;이경종;권오준;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.81-90
    • /
    • 1996
  • In this paper, a finite element based system is presented for the prediction of the distributions of the recrystallized grain sizes in the workpiece in hot forging. The system adopts fully coupled finite element thermo-mechanical model for predicting plastic deformatin and heat transfer occuring in the workpiece, and employsexisting metallurgical models relating the recrystallization behavior with the thermo-mechanical variables such as temperatures, strain, and strain rate. The system is applied to upsetting of cylindrical preform. The predicted grain sizes are compared with the measurements . It is further applied to forging of a complex-shaped product.

  • PDF

Development of a Program to Predict Recrystallizaion Behavior in the Hot Forming Process and Its Application (고온 성형에 있어서 재결정 거동 예측 프로그램 개발 및 적용)

  • Lee K. O.;Kang J. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.136-142
    • /
    • 2001
  • Recently, a much amount of attention has been paid not only to produce products with precise dimensional accuracy, but also to predict and control the microstructural evolution and mechanical properties of parts. Especially, to do the latter through computer simulation, the history of states factors influencing on these evolution such as temperature, strain, strain rate etc., should be calculated and a appropriate mathematical models for the prediction of microstructural evolution must be developed. Thus, in this study thermo-viscoplastic finite element program including the model for predicting microstructural has been developed. Also for the verification of developed program warm forging process for the rotor pole was simulated and the comparison between the results calculated and ones in the literature was made.

  • PDF

Comparative Numerical Analysis of Homogenized and Discrete-Micromechanics Models for Functionally Graded Materials (기능경사재를 위한 균질화와 이산화-미시역학 모델에 대한 비교 수치해석)

  • Ha, Dae-Yul;Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.399-404
    • /
    • 2000
  • Functionally graded materials(FGMs) involve dual-phase graded layers in which two different constituents are mixed continuously and functionally according to a given volume fraction. For the analysis of their thermo-mechanical response, conventional homogenized methods have been widely employed in order to estimate equivalent material properties of the graded layer. However, such overall estimations are insufficient to accurately predict the local behavior. In this paper, we compare the thermo-elastic behaviors predicted by several overall material-property estimation techniques with those obtained by discrete analysis models utilizing the finite element method, for various volume fractions and loading conditions.

  • PDF

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

Prediction of Recrystallization Behaviors in Hot Forging by the Finite Element Method (열간단조공정중 강의 재결정거동 유한요소해석)

  • 곽우진;이경종;권오준;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 1996
  • In this paper a finite element based system is presented for the prediction of the distributions of the recrystallized grain sizes in the workpiece in hot forging. The system adopts a fully coupled finite element thermo-mechanical model for predicting plastic deformation and heat transfer occurring in the workpiece and employs existing metallurgical models relating the recrystalliza-tion behavior with the thermo-mechanical variables such as temperatures strain and strain rate. The system is applied to upsetting of cylindrical preform. The predicted grain sizes are compared with the measurements. It is further applied to forging of a complex-shaped product.

  • PDF

Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory

  • Abualnour, Moussa;Chikh, Abdelbaki;Hebali, Habib;Kaci, Abdelhakim;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.489-498
    • /
    • 2019
  • The thermo-mechanical bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which introduces undetermined integral terms and needs only four variables. The validity of the present model is proved by comparison with solutions available in the literature.