• Title/Summary/Keyword: Thermo-mechanical Simulation

Search Result 129, Processing Time 0.026 seconds

The development and application of on-line model for the prediction of strip temperature in hot strip rolling (열간 사상 압연중 판 온도예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.336-345
    • /
    • 2004
  • Investigated via a series of finite-element(FE) process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the roll and strip in hot strip rolling. Then, on the basis of these parameters, on-line models are derived for the precise prediction of the temperature changes occurring in the bite zones as well as in the inter-stand zones in a finishing mill. The prediction accuracy of the proposed models is examined through comparison with predictions from a FE process model.

  • PDF

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

Numerical simulation of thermo-fluid flow in the blast furnace (고로내 열유동 현상의 수치해석 사례(I))

  • Jin, Hong-jong;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2038-2043
    • /
    • 2007
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences on overall operating condition of blast furnace such as gas flow, temperature distribution and chemical reactions. Because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process using the general purpose-simulation code. And Porous media is assumed for the gas flow and the potential flow for the solid flow. Velocity, pressure and temperature distribution for gas and solid are displayed as the simulation results. The cohesive zones are figured in 3 different operating conditions.

  • PDF

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong;Ehsan Mansouri;Nadia Ralston;Jong-Wan Hu
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.127-138
    • /
    • 2024
  • In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

Warpage Analysis of Fiber Reinforced Injection Molded Parts (단섬유 보강 이방성 사출성형품의 휨 해석)

  • Chung, Seong-Taek;Kim, Jin-Gon;Koo, Bon-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1968-1799
    • /
    • 2000
  • A warpage analysis program has been developed for fiber-reinforced injection molded parts. The warpage is predicted from the residual stress and anisotropic thermo-mechanical properties coupled with fiber orientation in the integrated injection molding simulation. A simple elastic model is used for the calculation of thermally and pressure-induced residual stresses which are employed as the initial conditions in the structural analysis. To improve the reliability of warpage analysis, a new triangular flat shell element superimposing well-known efficient plate bending and membrane element is presented. The numerical examples address the necessity to use anisotropic models for fiber-reinforced materials and show that predicted warpage is in good agreement with experimentally measured one.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

Wafer Level Package Design Optimization Using FEM (공정시간 및 온도에 따른 웨이퍼레벨 패키지 접합 최적설계에 관한 연구)

  • Ko, Hyun-Jun;Lim, Seung-Yong;Kim, Hee-Tea;Kim, Jong-Hyeong;Kim, Ok-Rae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • Wafer level package technology is added to the surface of wafer circuit packages to create a semiconductor technology that can minimize the size of the package. However, in conventional packaging, warpage and fracture are major concerns for semiconductor manufacturing. We optimized the wafer dam design using a finite element method according to the dam height and heat distribution thermal properties. The dam design influences the uniform deposition of the image sensor and prevents the filling material from overflowing. In this study, finite element analysis was employed to determine the key factors that may affect the reliability performance of the dam package. Three-dimensional finite element models were constructed using the simulation software ANSYS to perform the dam thermo-mechanical simulation and analysis.

Design Validation and Improvement of District Heating Pipe Using FE Simulation (유한요소 시뮬레이션을 통한 지역난방열배관 특성 평가 및 강화이형관의 제안)

  • Kim, Joo-Yong;Kim, Ho-Bum;Ko, Hyun-Il;An, Yong-Mo;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.337-345
    • /
    • 2009
  • This paper investigates the reliability of district heating pipes at thermo-elastic fatigue loading. District heating pipes, subjected to $120^{\circ}C$ and $16kg_f/cm^2$ due to water distributing service through inside the pipes, should endure long term cyclic thermal-mechanical loadings. The heating pipes are the co-centric tubes of steel pipe, poly urethane(PUR) insulator, and high density poly ethylene(HDPE) case. On installation, foam pad is externally wrapped for accommodating stress reduction near the bend sections of pipes. However, there have been frequent reports on the failures of bend sections in the middle of long term service. This study scrutinizes the observed failures near the bend sections through applying the finite element methods. Specially in this study, heating pipes are studied on the influence of foam padding on failures and proposed new designs for reinforced bend without foam pad.

Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model (3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석)

  • Kang, Chang Hak;Lee, Sung Uk;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • A fuel assembly consists of fuel rods composed of pellets (UO2) and a cladding tube (Zircaloy). The role of the fuel rods in the reactor is to generate heat by nuclear fission, as well as to retain fission products during operation. A simulation method using a computer program was used to evaluate the safety of the nuclear fuel rods. This computer program has been called the fuel performance code. In the analysis of a light water reactor fuel rod, the gap conductance, which depended on the distance between the pellets and cladding tube, mainly influenced the thermomechanical behavior of the fuel rod. In this work, a 3D gap element was proposed to simulate the thermo-mechanical behavior of the nuclear fuel rod, considering the gap conductance. To implement the proposed 3D gap element, a 3D thermo-mechanical module was also developed using FORTRAN90. The asymmetric characteristics of the nuclear fuel rod, such as the MPS (missing pellet surface) and eccentricity, were simulated to evaluate the proposed 3D gap element.