• 제목/요약/키워드: Thermo-hydrodynamic analysis

검색결과 8건 처리시간 0.033초

고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교 (The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

바이메탈 베어링의 THD해석 (THD Analysis ol Bimetal Bearing)

  • 한동철;조명래;정진영
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.228-234
    • /
    • 1998
  • The aim of this paper is to study the characteristics of thermo-hydrodynamic lubrication in the bimetal bearings. Bimetal bearing is composed of lining and back metal. The THD model is proposed to calculate oil film temperature and pressure in the bimetal bearing. As results of analysis, comparative results of maximum bearing temperature are presented for the various materials and thickness of lining metal.

  • PDF

Numerical Analysis of a Weak Shock Wave Propagating in a Medium Using Lattice Boltzmann Method (LBM)

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2034-2041
    • /
    • 2003
  • This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method, a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles $\theta$$\sub$w/. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

패드와 피봇 사이의 마찰이 틸팅패드 저널베어링에 미치는 영향 (Influence of Pad-Pivot Friction on the Performance of Tilting-Pad proceeding Bearing)

  • 김성기;김경웅;하현천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1016-1021
    • /
    • 2004
  • The need for developing a mathematical model for pad-pivot friction in tilting pad proceeding bearings has been well-recognized, since previous experimental work about the performances of the bearings hypothesized that the friction in the bearings is closely related to their performances. Especially, the sliding friction between pad and pivot in the ball and socket type of the bearings can influence the performance of the bearing. We propose a mathematical model for pad-pivot friction in the ball and socket type, which considers the geometrics of the pad and pivot of the bearings, by assuming the sliding friction in the ball and socket bearing as Coulomb friction. By utilizing the proposed model for pad-pivot friction, we show the analysis of Reynolds equation and energy equation, which explain the thermo-hydrodynamic characteristics of tilting pad proceeding bearings, by taking into account the turbulence and inlet pressure building as well. The results of the study show that the performance of titling-pad proceeding bearings can be greatly influenced by the pad-pivot friction. In particular, we have shown that the analysis of the pad-pivot friction is useful to explain the static proceeding loci and the dynamic characteristics of the ball and socket type of the bearings. Furthermore, for a given operating condition, we can obtain various equilibrium states which satisfy the static equilibrium conditions, by considering the pad-pivot friction.

  • PDF

예압 변경을 통한 틸팅패드 저널베어링의 Spragging 방지에 관한 연구 (Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload)

  • 양승헌;박철현;하현천;김재실
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.281-286
    • /
    • 2001
  • Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in a tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system.

  • PDF

쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석 (Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model)

  • 윤종완;문소연;박상신
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

  • Le, T.D.;Kim, J.H.;Hyeon, C.J.;Kim, D.K.;Yoon, Y.S.;Lee, J.;Park, Y.G.;Jeon, H.;Quach, H.L.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권4호
    • /
    • pp.25-29
    • /
    • 2016
  • The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.