• 제목/요약/키워드: Thermo-forming

검색결과 53건 처리시간 0.026초

열-소성 연계 해석을 이용한 자동차 로어암 부품 개발 (Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis)

  • 손현성;김흥기;최병근;조열래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화 (Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis)

  • 손현성;최병근
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

PC기반 소성가공공정 성형해석 시스템 개발 (Development of PC-based Simulation System for Metal Forming)

  • 곽대영;천재승;김수영;이근안;임용택
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.233-241
    • /
    • 2000
  • It is well known that the quality and efficiency of the design of metal forming processes can be significantly improved with the aid of effective numerical simulations. In the present study, a two-and three-dimensional finite element simulation system, CAMP form, was developed for the analysis of metal forming processes in the PC environment. It is composed of a solver based on the thermo-rigid-viscoplastic approach and graphic user interface (GUI) based pre-and post-processors to be used for the effective description of forming conditions and graphic display of simulation results, respectively. In particular, in the case of CAMPform 2D (two-dimensional), as the solver contains an automatic remeshing module which determines the deformation step when remeshing is required and reconstructs the new mesh system, it is possible to carry out simulations automatically without any user intervention. Also, the forming analysis considers ductile fracture of the workpiece and wear of dies for better usage of the system. In the case of CAMPform 3D, general three-dimensional problems that involve complex die geometries and require remeshing can be analyzed, but full automation of simulations has yet to be achieved. In this paper, the overall structure and computational background of CAMPform will be briefly explained and analysis results of several forming processes will be shown. From the current results, it is construed that CAMPform can be used in providing useful information to assist the design of forming processes.

  • PDF

열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석 (Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models)

  • 이원오
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.236-242
    • /
    • 2016
  • 본 연구에서는 유리섬유/폴리프로필렌 기반의 열가소성 복합재의 열성형 시험 평가를 위해, 성형온도에서의 인장 및 면내 전단 물성 시험을 실시하였고, 이를 비직교 구성방정식을 이용하여 정량화 하였다. 이를 통해 실험값과 잘 일치하는 고온에서의 인장 및 전단 물성값을 수식화하여 얻을 수 있었다. 열성형 시험을 위해 반구돔 시험을 실시하였고, 이형제 사용 유무 및 홀더의 무게를 달리해가며 성형품의 최종형상을 비교하였다. 그 결과 이형제를 사용하면 성형품의 대칭성이 확보되고 주름 개선 효과에 유리하다는 것을 확인하였고, 적당한 힘의 홀딩력 제어가 필수적이라는 것을 알 수 있었다. 더 나아가 비직교 구성방정식이 고려된 열성형 수치해석을 실시하여 실험 결과와 유사한 양상을 확인할 수 있었고, 홀딩력이 낮을 수록 주름이 많아지고, 마찰력이 클수록 더 많은 펀치력을 필요로 함을 확인하였다.

사상체질성립기전에 대한 이론적 고찰 (A theoretical study on the forming mechanism of Sasang constitution)

  • 지상은;최선미;조황성
    • 한국한의학연구원논문집
    • /
    • 제4권1호통권4호
    • /
    • pp.47-62
    • /
    • 1998
  • We explicate the forming mechanism of Sasang constitution as the principle of energy distribution which is based on the evolutionary hypothesis. The result was obtained as follows: 1. The principle of form-image (形象) in oriental medicine can be explained with the relation between structure and function that a life acquires through the adaptation and evolution. 2. The Sung-jung (性情) in Sasang constitutional medicine can be explained as the strategy for survival or the pattern of adaptation by which an individual or a species lives in this world. 3. The forming mechanism of Sasang constitutional organic phase (臟局) can be explained as the principle of energy distribution which includes three hypothesis (hypothesis of limited resources, hypothesis of preference and hypothesis of effectiveness). 4. It is postulated that the local hemodynamics is one of the most important factors that determine the difference of Sasang constitutional organic function. 5. The relation of metabolic rate, local hemodynamics and thermo-metabolism is inseparable and it is the important point of forming mechanism of Sasang constitution and the diagnosis of pulse.

  • PDF

보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석 (Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube)

  • 윤석진;박종규;김양수;서창희;이경훈;김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

아몰퍼스 판재 성형의 스프링 백에 관한 연구 (A Study on Spring Back in Sheet Forming of Amorphous Alloys)

  • 윤상헌;이용신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작 (Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis)

  • 고대철;이찬주;김병민
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

유도가열을 이용한 강판성형공정에서 유도코일 형상의 효과 (Effects of Inductor Shape in Steel Forming Process with High Frequency Induction Heating)

  • 양영수;배강열;신희윤
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.66-72
    • /
    • 2008
  • Because of high intensity and easy controllability of the heat source, high frequency induction heating has been concerned and studied for the steel forming process in the ship building industry. However, the heating and forming characteristics have to be further properly modelled and analyzed for the process to be utilized with its optimal working parameters. In this study, a modelling with thermo-elasto-plastic analysis is performed using the FEM to study heat flow and deformation of the steel plate during the forming process with the electro-magnetic induction heating. The numerical model is then used to study the effect of the inductor shape on the magnitude of angular deformation of the plate during the forming process. It is revealed that the square shape of inductor induces the largest deformation among the rectangular inductors.

아몰퍼스 고온 판재성형시 스프링백 (Spring Back in Amorphous Sheet Forming at High Temperature)

  • 이용신
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.