• 제목/요약/키워드: Thermo-acoustic Analysis

검색결과 27건 처리시간 0.035초

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

열음향학적 불안정성 검출에 대한 개선된 힐버트-후앙 변환의 적용 (Applications of the improved Hilbert-Huang transform method to the detection of thermo-acoustic instabilities)

  • 차지형;김영석;고상호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.555-561
    • /
    • 2012
  • Empirical Mode Decomposition(EMD)을 통한 Hilbert Huang Transform(HHT)은 시간-주파수 영역분석 방법 중 하나로 기존의 다른 분석 방법에 비해 비선형, 비정상 신호를 해석 가능하다는 등 여러가지 이점이 있다. 그러나 인접한 주파수를 분별하기 힘들고 잡음에 취약하다는 결점이 있다고 알려져 있다. 본 논문에서는 HHT와 정상신호 분석에 효과적인 Short-Time Fourier Transform(STFT)을 비교하여 각 방법의 장 단점을 분석하고 Rijke 튜브 실험에서 얻은 열음향학적 불안정 데이터에 적용하여 잡음에 취약한 점을 보완한 Improved HHT와 비교한다. 그 결과, EMD를 이용한 Original HHT보다 EEMD를 이용한 Improved HHT가 잡음의 영향을 적게 받아 보다 정확한 신호분석이 가능하다는 것을 알 수 있었다.

  • PDF

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash;Trupti R Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.265-281
    • /
    • 2024
  • The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향 (Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System)

  • 홍수민;김대식
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

A Numerical Analysis of Supersonic Intake Buzz in an Axisymmetric Ramjet Engine

  • Yeom, Hyo-Won;Sung, Hong-Gye;Yang, Vigor
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.165-176
    • /
    • 2015
  • A numerical analysis was conducted to investigate the inlet buzz and combustion oscillation in an axisymmetric ramjet engine with wedge-type flame holders. The physical model of concern includes the entire engine flow path, extending from the leading edge of the inlet center-body through the exhaust nozzle. The theoretical formulation is based on the Farve-averaged conservation equations of mass, momentum, energy, and species concentration, and accommodates finite-rate chemical kinetics and variable thermo-physical properties. Turbulence closure is achieved using a combined scheme comprising of a low-Reynolds number k-${\varepsilon}$ two-equation model and Sarkar's compressible turbulence model. Detailed flow phenomena such as inlet flow aerodynamics, flame evolution, and acoustic excitation as well as their interactions, are investigated. Mechanisms responsible for driving the inlet buzz are identified and quantified for the engine operating at subcritical conditions.

3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석 (Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach)

  • 홍수민;김대식
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.

Development of an Ultra-Slim System in Package (SiP)

  • Gao, Shan;Hong, Ju-Pyo;Kim, Jin-Su;Yoo, Do-Jae;Jeong, Tae-Sung;Choi, Seog-Moon;Yi, Sung
    • 마이크로전자및패키징학회지
    • /
    • 제15권1호
    • /
    • pp.7-18
    • /
    • 2008
  • This paper reviews the current development of an ultra-slim SiP for Radio Frequency (RF) application, in which three flip chips, additional passive components and Surface Acoustic Wave (SAW) filters are integrated side-by-side. A systematic investigation is carried out for the design optimization, process and reliability improvement of the package, which comprises several aspects: a design study based on the 3D thermo-mechanical finite element analysis of the packaging, the determination of stress, warpage distribution, critical failure zones, and the figuration of the effects of material properties, process conditions on the reliability of package. The optimized material sets for manufacturing process were determined which can reduce the number of testing samples from 75 to 2. In addition the molded underfilling (MUF) process is proposed which not only saves one manufacturing process, but also improves the thermo-mechanical performance of the package compared with conventional epoxy underfilling process. In the end, JEDEC's moisture sensitivity test, thermal cycle test and pressure cooker tests have also been carried out for reliability evaluation. The test results show that the optimized ultra-slim SiP has a good reliability performance.

  • PDF

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

로켓 연소기의 동압 진폭엔벨롭을 이용한 안정성 해석 (Stability Analysis Using the Amplitude Envelope of Dynamic Pressure in the Rocket Combustor)

  • 이수용
    • 한국추진공학회지
    • /
    • 제25권1호
    • /
    • pp.42-49
    • /
    • 2021
  • 얼마나 쉽게 연소불안정 해지는지에 대한 척도로서, 작동 안정성 여유를 예측하기 위해 로켓연소기시스템의 열음향 불안정을 검토하였다. 연소기 시스템의 동적거동 특성파악을 위해 연소성능시험 중 측정한 연소기의 동압 데이터를 바탕으로 시간이 지남에 따라 시스템이 안정해지는지를 결정하는 파라미터로서 성장속도 계수를 구하였다. 파라미터 추출은 시계열 압력데이터를 주파수 도메인으로 전환하여 관심모드의 성장속도나 감쇠계수를 도출하는 방법을 우선 검토하였으며, 스토캐스틱 해석의 경우에는 압력진동의 진폭 엔벨롭으로 부터 압력진폭 PDF를 추출했다.

관형 연소기의 열-음향 진동에 의한 소음 특성 예측 (Prediction of Thermo-acoustic Oscillation Characteristics in a Ducted Combustor)

  • 김재헌;이정한;이수갑;정인석
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.56-66
    • /
    • 1999
  • 일반 내연기관이나 산업용로, 로켓 엔진 등의 기본적인 형상이라고 할 수 있는 관형 연소기에서 발생하는 연소 소음은 열-음향 되먹임 현상에 의해 야기되는 형태가 지배적이며. 심할 경우 시스템의 파괴를 야기할 수도 있는 중요한 문제이다. 본 연구에서는 열-음향 진동중에서도 열-기인 음향 진동으로 분류될 수 있는 현상에 초점을 맞추어 유동장, 음향장 및 연소 반응을 수치적으로 해석하여 여러 주어진 조건에 따른 정상적인 해석뿐만 아니라 음압 수준이나 기본 주파수 예측과 같은 정량적인 결과 도출을 효과적으로 수행할 수 있는 수치적 기법의 개발을 목적으로 하였다. 다양한 당량비를 가진 혼합기에 대해 수치 해석을 수행한 결과 실험 측정치의 경향과 잘 일치할 뿐만 아니라 정량적인 면에서도 상당히 정확한 예측을 할 수 있음을 확인하였다.

  • PDF