• 제목/요약/키워드: Thermo-Mechanical Fatigue

검색결과 62건 처리시간 0.025초

용접시편 변형률 및 잔류응력의 유한요소해석 (Finite Element Analysis of Strain and Residual Stress in Weld Specimen)

  • 양승용;구병춘;정흥채
    • 한국철도학회논문집
    • /
    • 제7권2호
    • /
    • pp.85-92
    • /
    • 2004
  • This paper consists of two parts. One is finite element analysis of the redistribution of residual stresses of weld specimen by cutting. This work is necessary to predict the actual residual stress distribution of weld specimens used in fatigue test. The other subject is to calculate the relaxation of residual stress and the strain field induced by cyclic loading. To obtain fatigue life of weldment, the value of strain amplitude at each position is necessary, for example in the strain-life approach, and the numerical results can be used to verify experimental strain measurements. Thermo mechanical finite element analyses were conducted on the commercial package ABAQUS.

Nondestructive Characterization and In-situ Monitoring of Corrosion Degradation by Backward Radiated Ultrasound

  • Song, Sung-Jin;Kim, Young H.;Bae, Dong-Ho;Kwon, Sung D.
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.114-119
    • /
    • 2005
  • Since the degradation caused by corrosion is restricted to the surface of materials, conventional ultrasonic nondestructive evaluation methods based on ultrasonic bulk waves are not applicable to characterization of the corrosion degradation. To take care of this difficulty, a new nondestructive evaluation method that uses ultrasonic backward radiation has been proposed recently. This paper explores the potential of this newly developed method for nondestructive characterization and in-situ monitoring of corrosion degradation. Specifically, backward radiated ultrasounds from aged thermo-mechanically controlled process (TMCP) steel specimens by corrosion fatigue were measured and their characteristics were correlated to those of the aged specimens. The excellent correlation observed in the present study demonstrates the high potential of the backward radiated ultrasound as an effective tool for nondestructive characterization of corrosion degradation. In addition, the potential of the backward radiated ultrasound to in-situ monitoring of corrosion degradation is under current investigation.

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.

레이저용접부의 파괴에 미치는 잔류응력의 영향 (The Effect of residual stress on fracture behavior in the laser weldment)

  • 조성규;양영수;노영진
    • 한국레이저가공학회지
    • /
    • 제11권2호
    • /
    • pp.1-7
    • /
    • 2008
  • The integrity of laser welded structures is decided in fracture strength and fatigue strength. This study made an effort to understand the fracture behavior considering residual stress. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF

마찰교반접합한 오스테나이트계 스테인리스강과 6013알루미늄 합금 이종 접합부의 접합 특성 및 계면 성질 (Joint properties and Interface Analysis of Friction Stir Welded Dissimilar Materials between Austenite Stainless Steel and 6013 Al Alloy)

  • 이원배;;;정승부
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.61-68
    • /
    • 2005
  • Dissimilar joining of Al 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side were composed of the heat affected zone and the plastically deformed zone, while those in the Al alloy side were composed of the recrystallized zone including stainless steel particles, the thermo-mechanically affected zone and the heat affected zone. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained Al alloy with lamella structure and intermetallic compound layer. Thickness of the intermetallic layer was approximately 300nm and was identified as the A14Fe with hexagonal close packed structure. Mechanical properties, such as tensile and fatigue strengths were lower than those of 6013 Al alloy base metal, because tool inserting location was deviated to Al alloy from the butt line, which resulted in the lack of the stirring.

열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구 (A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen)

  • 이규범;최주호;안대환;이보영
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.35-42
    • /
    • 2008
  • 원자력발전소에서는 열교환 파이프에서 발생하는 열피로 균열을 비파괴 탐상장비를 이용하여 조기에 발견하는 것이 안전을 위해 매우 필요하며, 따라서 이를 모사한 인공균열시편 제작에 많은 노력을 기울이고 있다. 그러나 이러한 균열은 일반 기계가공으로 제작하는 것이 불가능하여 실제 조건과 유사한 열 반복하중 하에서 제작될 수밖에 없는데, 이를 위해 많은 시간이 소요된다. 본 연구에서는 크랙성장 시뮬레이션 기법을 이용하여 이러한 균열 제작시간을 단축하기 위한 최적의 열하중 조건을 찾고자 하였다. 이를 위해 임의조건에서 시뮬레이션 및 열피로균열 발생 기초실험을 수행하여 균열 초기수명과 진전수명을 검증하였고, 이를 바탕으로 다양한 가열 및 냉각시간을 시뮬레이션 함으로써 제작시간을 최소화하는 열하중 조건을 구하였다. 시뮬레이션에서는 응력해석을 위해 상용 소프트웨어 ANSYS를 초기균열수명 계산을 위해 수치계산용 소프트웨어 ZENCRACK을 이용하여 코딩을 균열진전수명 평가를 위해 ZENCRACK 소프트웨어를 이용하였다. 그 결과 1mm 균열 제작에 소요되는 시간은 초기의 418시간에서 319시간으로 24% 단축되는 것으로 예측되었다.

Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가 (A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel)

  • 김덕근;조동필;오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.

예압 변경을 통한 틸팅패드 저널베어링의 Spragging 방지에 관한 연구 (Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload)

  • 양승헌;박철현;하현천;김재실
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.281-286
    • /
    • 2001
  • Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in a tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system.

  • PDF

SMA-based devices: insight across recent proposals toward civil engineering applications

  • Casciati, Sara
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.111-125
    • /
    • 2019
  • Metallic shape memory alloys present fascinating physical properties such as their super-elastic behavior in austenite phase, which can be exploited for providing a structure with both a self-centering capability and an increased ductility. More or less accurate numerical models have been introduced to model their behavior along the last 25 years. This is the reason for which the literature is rich of suggestions/proposals on how to implement this material in devices for passive and semi-active control. Nevertheless, the thermo-mechanical coupling characterizing the first-order martensite phase transformation process results in several macroscopic features affecting the alloy performance. In particular, the effects of day-night and winter-summer temperature excursions require special attention. This aspect might imply that the deployment of some devices should be restricted to indoor solutions. A further aspect is the dependence of the behavior from the geometry one adopts. Two fundamental lacks of symmetry should also be carefully considered when implementing a SMA-based application: the behavior in tension is different from that in compression, and the heating is easy and fast whereas the cooling is not. This manuscript focuses on the passive devices recently proposed in the literature for civil engineering applications. Based on the challenges above identified, their actual feasibility is investigated in detail and their long term performance is discussed with reference to their fatigue life. A few available semi-active solutions are also considered.

유한요소 시뮬레이션을 통한 지역난방열배관 특성 평가 및 강화이형관의 제안 (Design Validation and Improvement of District Heating Pipe Using FE Simulation)

  • 김주용;김호범;고현일;안영모;조종두
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.337-345
    • /
    • 2009
  • This paper investigates the reliability of district heating pipes at thermo-elastic fatigue loading. District heating pipes, subjected to $120^{\circ}C$ and $16kg_f/cm^2$ due to water distributing service through inside the pipes, should endure long term cyclic thermal-mechanical loadings. The heating pipes are the co-centric tubes of steel pipe, poly urethane(PUR) insulator, and high density poly ethylene(HDPE) case. On installation, foam pad is externally wrapped for accommodating stress reduction near the bend sections of pipes. However, there have been frequent reports on the failures of bend sections in the middle of long term service. This study scrutinizes the observed failures near the bend sections through applying the finite element methods. Specially in this study, heating pipes are studied on the influence of foam padding on failures and proposed new designs for reinforced bend without foam pad.