• 제목/요약/키워드: Thermally Sprayed Coating

검색결과 34건 처리시간 0.017초

비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동 (Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite)

  • 장범택;이승훈
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.629-636
    • /
    • 2014
  • 비정질합금이 가지고 있는 우수한 기계적 성질과 화학적 특성을 부품소재에 표면개질을 목적으로 고속화염 용사법으로 대면적 코팅층을 형성하였고 내열성이 높은 자융성합금과 초경합금 성분들을 적절히 혼합하여 비정질기지 복합재료를 제조하여 코팅들의 미세조직 관찰과 나노인덴테이션을 이용한 미세표면의 기계적 거동을 분석하였다. 각 코팅층의 미세조직을 관찰한 결과, 단일상 비정질 코팅에는 미용융 입자와 lamellae 영역이 존재하고 자융성합금이 고용된 복합재에는 in-situ $Cr_2Ni_3$ 석출물, 자융성합금과 초경합금성분이 함께 혼합된 코팅층은 석출물과 ex-situ WC 강화입자가 공존하였다. 이들 미세표면의 기계적 거동은 제 2 상이 고용된 비정질 기지 복합재의 코팅층의 기계적 특성이 전체적으로 향상되었다.

Influence of Compressive Stress in TGO Layer on Impedance Spectroscopy from TBC Coatings

  • Kang, To;Zhang, Jianhai;Yuan, Maodan;Song, Sung-Jin;Kim, Hak-Joon;Kim, Yongseok;Seok, Chang Sung
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.46-53
    • /
    • 2013
  • Impedance spectroscopy is a non-destructive evaluation (NDE) method first proposed and developed for evaluating TGO layers with compressive stress inside thermally degraded plasma-sprayed thermal barrier coatings (PS TBCs). A bode plot (phase angle (h) vs. frequency (f)) was used to investigate the TGO layer on electrical responses. In our experimental study, the phase angle of Bode plots is sensitive for detecting TGO layers while applying compressive stress on thermal barrier coatings. It is difficult to detect TGO layers in samples isothermally aged for 100 hrs and 200 hrs without compressive stress, and substantial change of phase was observed these samples with compressive stress. Also, the frequency shift of the phase angle and change of the phase angle are observed in samples isothermally aged for more than 400 hrs.

최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성 (Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process)

  • 송기오;조동율;윤재홍;방위;윤석조;윤국태;서창희;황순영;하성식
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.

진공 플라즈마 용사법을 통해 형성된 NiCoCrAlY 오버레이 코팅의 반복 산화 거동 (Cyclic Oxidation Behavior of Vacuum Plasma Sprayed NiCoCrAlY Overlay Coatings)

  • 유연우;남욱희;박훈관;박영진;이성훈;변응선
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.283-288
    • /
    • 2019
  • MCrAlY overaly coatings are used as oxidation barrier coatings to prevent degradation of the underlying substrate in high temperature and oxidizing environment of the hot section of gas turbines. Therefore, oxidation resistance in high temperature is important property of MCrAlY coatings. Also, coefficients of thermal expansion (CTE) of MCrAlY have middle value of that of Ni-based superalloys and oxides, which have the effect of preventing the delamination of the surface oxides. Cyclic oxidation test is one of the most useful methods for evaluating the high temperature durability of coatings used in gas turbines. In this study, NiCoCrAlY overlay coatings were formed on Inconel 792(IN 792) substrates by vacuum plasma spraying process. Vacuum plasma sprayed NiCoCrAlY coatings and IN 792 susbstrates were exposed to 1000℃ one-hour cyclic oxidation environment. NiCoCrAlY coatings showed lower weight gain in short-term oxidation. In long-term oxidation, IN 792 substrates showed higher weight loss due to delamination of surface oxide but NiCoCrAlY coatings showed lower weight loss. X-ray diffraction (XRD) analysis showed α-Al2O3 and NiCr2O4 was formed during the cyclic oxidation test. Through cross-section observation using scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD) analysis, thermally grown oxide (TGO) layer composed of α-Al2O3 and NiCr2O4 was formed and the thickness of TGO increased during 1000℃ cyclic oxidation test. β phase in upper side of NiCoCrAlY coating was depleted due to oxidation of Al and outer beta depletion zone thickness also increased as the cyclic oxidation time increased.