• Title/Summary/Keyword: Thermal-meta Structures

Search Result 4, Processing Time 0.063 seconds

A STUDY ON THE FLEXURAL BOND STRENGTH OF THE GOLD AND THE Co-Cr ALLOY TO THE DENTURE BASE RESINS (금 합금 및 비 귀금속 합금에 대한 의치상 레진의 결합강도에 관한 연구)

  • Park, Hyun-Joo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.500-509
    • /
    • 2000
  • In general, the three major oral functions of edentulous patients-mastication, phonation, esthetics-can be rehabilitated by the complete dentures, and both the resin based complete denture and the metal based complete denture are commonly used by many clinicians today. For the sake of many advantages such as the excellent thermal conductivity, low volumetric change, high strength, low risk of fracture and the better patient's adaptation, the metal based complete dentures are indicated to the several cases. But, there are common failures of these type of dentures mainly by the fracture or the debonding between the resin structures and the metal frameworks which is caused by the discrepancies of the flexural strength and the coefficient of thermal expansion. This is aggravated by the water contamination of the interface when exposed to the oral environment and results in the failure of complete denture treatment. So, the purpose of this study is to compare the bond strength and the fracture patterns of the gold alloy based and the Co-Cr alloy based complete dentures using the PMMA resins and the 4-META adhesive resins. The results of this study were as follows. 1. Both to the PMMA resin and the 4-META resin, the flexural bond strength of gold alloy is lower than that of Co-Cr alloy(P<0.05) 2. To the Co-Cr alloy, the bond strength of the 4-META resin is significantly higher than that of PMMA resin(P<0.05). 3. The flexural strength of the group with the mechanical retention form is significantly higher than that of the group without retention form(P<0.05). 4. Comparing with the other groups, the fracture patterns of the group 3 are quite different from the group 1,2,5.

  • PDF

Effect of sodium hexa-meta phosphate as pore-sealing agent on the corrosion performance of Al-Zn coating deposited by twin-wire arc thermal spray process in 3.5 wt.% NaCl solution (3.5 중량% NaCl 용액에서 쌍선 아크 용사 공정으로 증착된 Al-Zn 코팅의 부식 성능에 대한 기공 밀봉제로서의 헥사메타인산나트륨의 영향)

  • Singh, Jitendra Kumar;Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.81-82
    • /
    • 2022
  • Al and Zn are used to protect the steel structures from corrosion. In the present studies, 15Al-85Zn alloy wires has been used for the deposition of coating by arc thermal spray process. Moreover, this process of coating exhibited severe defects formation, therefore, this coating was post-treated with different concentrations i.e. 0.05, 0.1 and 0.5M sodium hexa meta phosphate (Na6[(PO3)6]: SHMP) to fill to defects of deposited coatings and assessed their corrosion resistance in 3.5 wt.% NaCl solution with exposure periods. After the treatment, the porosity of the coating reduced significantly by formation of composite oxide films onto the coating surface. Initially, 0.5 M SHMP treated coating exhibited highest in total impedance due to significant reduction of porosity but once the exposure periods are extended, the composite oxides are dissolved, thus, total impedance is decreased.

  • PDF

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Structural performance of unprotected concrete-filled steel hollow sections in fire: A review and meta-analysis of available test data

  • Rush, David;Bisby, Luke;Jowsey, Allan;Melandinos, Athan;Lane, Barbara
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.325-350
    • /
    • 2012
  • Concrete filled steel hollow structural sections (CFSs) are an efficient, sustainable, and attractive option for both ambient temperature and fire resistance design of columns in multi-storey buildings and are becoming increasingly common in modern construction practice around the world. Whilst the design of these sections at ambient temperatures is reasonably well understood, and models to predict the strength and failure modes of these elements at ambient temperatures correlate well with observations from tests, this appears not to be true in the case of fire resistant design. This paper reviews available data from furnace tests on CFS columns and assesses the statistical confidence in available fire resistance design models/approaches used in North America and Europe. This is done using a meta-analysis comparing the available experimental data from large-scale standard fire tests performed around the world against fire resistance predictions from design codes. It is shown that available design approaches carry a very large uncertainty of prediction, suggesting that they fail to properly account for fundamental aspects of the underlying thermal response and/or structural mechanics during fire. Current North American fire resistance design approaches for CFS columns are shown to be considerably less conservative, on average, than those used in Europe.