• 제목/요약/키워드: Thermal-hydraulic system code

검색결과 160건 처리시간 0.044초

STATE OF THE ART IN USING BEST ESTIMATE CALCULATION TOOLS IN NUCLEAR TECHNOLOGY

  • D'AURIA FRANCESCO;ANIS BOUSBIA-SALAH;PETRUZZI ALESSANDRO;NEVO ALESSANDRO DEL
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.11-32
    • /
    • 2006
  • System thermal-hydraulic codes have been used in the past decades in the areas of design, operation, licensing and safety of Nuclear Power Plants (NPPs). The development and validation of these codes have reached a high degree of maturity, through the consideration of huge experiments and advanced numerical models. Nowadays, the analyses are based upon realistic approaches rather than the conservative evaluation models. However the applications of these computational tools require preliminary qualification issues. Although huge amounts of financial and human resources have been invested for the development and improvement of codes, the calculation results are still affected by errors. In the sophisticated nuclear technology, design and safety of NPP, these errors must be quantified. An overview of the state of the art of the current thermal-hydraulic system code is developed and the need of uncertainty analysis in code calculations is emphasized. Several sources of uncertainty have been classified and commented, and typical applications of such methods are shown.

A SUMMARY OF 50th OECD/NEA/CSNI INTERNATIONAL STANDARD PROBLEM EXERCISE (ISP-50)

  • Choi, Ki-Yong;Baek, Won-Pil;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.561-586
    • /
    • 2012
  • This paper describes a summary of final prediction results by system-scale safety analysis codes during the OECD/NEA/CSNI ISP-50 exercise, targeting a 50% Direct Vessel Injection (DVI) line break integral effect test performed with the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). This ISP-50 exercise has been performed in two consecutive phases: "blind" and "open" phases. Quantitative comparisons were performed using the Fast Fourier Transform Based Method (FFTBM) to compare the overall accuracy of the collected calculations. Great user effects resulting from the combination of the possible reasons were found in the blind phase, confirming that user effect is still one of the major issues in connection with the system thermal-hydraulic code application. Open calculations showed better prediction accuracy than the blind calculations in terms of average amplitude (AA) value. A total of nineteen organizations from eleven countries participated in this ISP-50 program and eight leading thermal-hydraulic system analysis codes were used: APROS, ATHLET, CATHARE, KORSAR, MARS-KS, RELAP5/MOD3.3, TECH-M-97, and TRACE.

Development of an Operator Aid System For The Nuclear Plant Severe Accident Training and Management

  • Kim Ko Ryu;Park Sun Hee;Kim Dong Ha
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.32-37
    • /
    • 2004
  • Recently KAERI has developed the severe accident management guidance to establish Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, and the MELCOR code is used as the simulation engine. SATS graphically displays and simulates the severe accidents with interactive user commands. The control capability of SATS could make a severe accident training course more interesting and effective. In this paper the development and functions of the electrical hypertext guidance module HyperKAMG and the SATS-HyperKAMG linkage system for the severe accident management are described.

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

열수력 기기해석용 CUPID 코드 개발 및 평가 전략 (THE DEVELOPMENT AND ASSESSMENT STRATEGY OF A THERMAL HYDRAULICS COMPONENT ANALYSIS CODE)

  • 박익규;조형규;이재룡;김정우;윤한영;이희동;정재준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.30-48
    • /
    • 2011
  • A three-dimensional thermal-hydraulic code, CUPID, has been developed for the analysis of transient two-phase flows at component scale. The CUPID code adopts a two-fluid three-field model for two-phase flows. A semi-implicit two-step numerical method was developed to obtain numerical solutions on unstructured grids. This paper presents an overview of the CUPID code development and assessment strategy. The governing equations, physical models, numerical methods and their improvements, and the systematic verification and validation processes are discussed. The code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER, are also presented.