• Title/Summary/Keyword: Thermal-fluid analysis

Search Result 809, Processing Time 0.03 seconds

Thermal Fluid Flow Analysis of Environment-Friendly Power Transformer Using CFD (CFD를 이용한 환경친화형 전력용 변압기의 열유동해석)

  • Kim, Ji-Ho;Kim, Jong-Wang;Kweon, Dong-Jin;Woo, Jung-Wook;Koo, Kyo-Sun;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.924-925
    • /
    • 2011
  • 본 논문에서는 환경친화적이고, 인화점 및 발화점이 높아 화재의 위험도가 낮은 식물성 절연우를 기존 변압기의 광유를 대체로 사용하기 위한 열적 특성을 열유동해석을 이용하여 온도분포를 수치해석을 통하여 예측하였다. 해석모델로는 154kV 급 단상 내철형 유입자냉식 변압기를 대상으로 CFD 해석을 수행하였으며, 광유와 식물성 절연유는 부하의 변화에 따른 온도특성을 파악하는 동시에 핫스팟(hot spot)을 예측하였다. 본 논문은 변압기를 3차원 모델링하여 유동 및 온도 분포를 해석한 결과, 변압기의 내부 온도 및 핫스팟 추적에 대하여 변압기의 수명에 대한 예측이 가능하며, 식물성 절연유를 사용한 전력용 변압기 온도 분포 해석결과는 식물성 절연유의 적용 및 냉각 설계 변경에 기초자료롤 활용될 것이다.

  • PDF

Performance of Refrigerated Display Cabinets in accordance with the Supply Air Jet Condition (급기제트 조건에 따른 냉동용 전시케이스의 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.80-86
    • /
    • 2011
  • Vertical open display cabinets are widely used in shopping mall, supermarkets, retail stores. Maintaining the temperature of foods in the display cabinet is vitally important to retailers to ensure optimal food quality and safety. The purpose of this study is to reduce the infiltration of air and heat loss from ambient space to display cabinet. The three-dimensional Computational Fluid Dynamics(CFD) simulation is used for the analysis of air flow patterns and temperature distribution in refrigerated display cabinets. Under several operating conditions which vary both the inner and outer jet velocities in the range from 0.3 to 1.1 m/s, simulations were carried out. This paper presents a performance of display cabinets with single jet and double jet. The energy consumption due to thermal entrainment ratio is plotted with varying Re. It was found that the double jet system is better than single jet system in terms of temperature distribution and energy saving.

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.

Present Status and Further Development of Performances of Industrial Gas Turbine Engine Turbogreen 1200

  • Min, Daiki;Bograd, Alexander M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.191-197
    • /
    • 1998
  • The recent results of the engine development performed in this you on Turbogreen 1200, the first industrial gas turbine engine developed in Korea, are presented. In order to improve the engine performance and structural stability from the first prototype engine, several variants of the engine and major components such as combustor and rotor assembly have been developed and tested. This paper shows these results especially focused on the engine test and performance analysis, in which test system, instrumentation and data processing are discussed as well. The engine performance and its trend give relatively good coincidence with the design ones. At design power of 1.2MW, the thermal efficiency of the engine is estimated over $25\%$ which is below the design target of $27.2\%$. This gap of efficiency is caused mainly by large tip clearance between turbine blades and casing. Considering high design efficiency superior to those of other competitive engines in this power class, Turbogreen 1200 would have a strong competition in its performance if the design efficiency is achieved by further developments such as tip clearance control, which are very possible and natural in final mass production of the developed gas turbine engine.

  • PDF

Film Cooling Modeling for Combustion and Heat Transfer within a Regeneratively Cooled Rocket Combustor (막냉각 모델을 이용한 재생냉각 연소기 성능/냉각 해석)

  • Kim, Seong-Ku;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.636-640
    • /
    • 2011
  • Film cooling technique has been applied to effectively reduce thermal load on liquid rocket combustion chambers by direct injection of a portion of propellant, which flows through the regeneratively cooling channels, into the chamber wall. This study developed a comprehensive model to quantitatively predict the effects of kerosene film cooling on propulsive performance and wall cooling at supercritical pressure conditions, and assessed the predictive capability against hot-firing tests of an actual combustor. The present model is expected to be utilized as a design and analysis tool to meet the conflicting requirements in terms of performance, cooling, pressure loss and weight.

  • PDF

Development of a Small Centrifugal Fan with CFD (수치해석에 의한 소형 원심팬 개발)

  • Chee, Seon-Koo;Park, Sung-Kwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.11-16
    • /
    • 2001
  • It is not easy to apply a small-sized centrifugal fan to the duct used for the thermal management of home electronic appliances due to complex design parameters of its blades and scroll. The main objective of this study was to develop the systematic process to design an optimal centrifugal fan based on the 3-dimensional configuration of blades obtained from the conceptual design program self-developed with the given design constraints such as the flow rate, the total pressure loss, the size of fan, and the number of rotation. The design process to find an optimal centrifugal fan for refrigerator was technologically linked in many ways. The complex grid generation system of the fan model included scroll was adopted for the numerical simulation. The FVM CFD code, FLUENT, was used to investigate the three dimensional flow pattern at the coordinate system of rotating frame and to check the optimal performance of the fan. By using this design process, a selected centrifugal fan was designed, numerically simulated, manufactured and experimentally tested in the wind tunnel. The performance curve of fan manufactured by NC process was compared with numerically obtained characteristic curve. The developed design method was proved into being excellent because these two curves were well matched.

  • PDF

IMPROVEMENT OF A SEMI-IMPLICIT TWO-PHASE FLOW SOLVER ON UNSTRUCTURED MESHES (비정렬 격자계에서의 물-기체 2상 유동해석코드 수치 기법 개선)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.380-388
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.

  • PDF

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

Performance of a Heat pipe with Axial Grooves Formed from Corrugated Plate (접힌 板材 로 만든 그루우브 를 갖는 熱파이프 에 관한 硏究)

  • 김태현;김기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1985
  • Heat pipe with axial grooves formed from corrugated plate in the adiabatic section is studied. The axial grooves made of thin corrugated plate decrease considerably the flow resistance in the adiabatic section without increasing the thermal resistance of the heat pipe, resulting in the increase of the capillary limit, especially in the cases of heat pipes that have long adiabatic section. In the theoretical analysis, it is assumed that the liquid flow in each section laminar and fully developed and Darcy's equation can be applied to each section neglecting the end-effects associated with each transitionary region. A heat pipe which consists of axially corrugated rectangular grooves in the adiabatic section and bronze mesh in the evaporator and codenser sections was made and tested. Comparison of the experimental results, using acetone as the working fluid, with the theoretical result shows satisfactory agreement.

Numerical analysis for the dis tribution transformer design (400KVA급 배전 변 압기 열 유동해석)

  • Yang, S.W.;Kim, W.S.;Kweon, K.Y.;Lee, S.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.699-702
    • /
    • 2008
  • This paper describes the numerical simulations in the cooling of the radiator in a distribution transformer. The aim of this work is the cooling optimization of the transformer by CFD simulations. A clear understanding of the cooling pattern in a radiator which is a main heat remover in the power transformer is essential for optimizing the radiator design increasing the thermal efficiency. In this paper we study the heat transfer and fluid flow in a 3-phase 400kVA transformer. The plate radiators of this transformer become wrinkled (corrugated radiator) and there are filled with transformer oil. The oil is circulated due to the natural convection driven by buoyancy effects through radiators so that the ultimate cooling medium is the surrounding air. In the design of transformers, it is of interest to minimize the cost and size of radiators. The obtained results show the temperature and flow distributions and the possibility to optimize the transformer with 3-dimensional CFD models using FLUENT.

  • PDF