• Title/Summary/Keyword: Thermal-Structural analysis

Search Result 1,059, Processing Time 0.024 seconds

A Study on Thermal Ratcheting Structure Test of 316L Test Cylinder (316L 시험원통의 열라체팅 구조시험에 관한 연구)

  • Lee, H.Y.;Kim, J.B.;Koo, G.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.243-249
    • /
    • 2001
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to $550^{\circ}$ and the temperature differences of about $500^{\circ}C$. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests.

  • PDF

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

Analysis on Thermal Structural Characteristics of Thermal Protection System Panel for a High-speed Vehicle (초고속 비행체 열방어 시스템 패널의 열구조 특성 분석)

  • Lee, Heesoo;Kim, Yongha;Park, Jungsun;Goo, Namseo;Kim, Jaeyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.942-944
    • /
    • 2017
  • High-speed vehicles are subjected to complex loads, such as acoustic pressure from the engine at launch and aerodynamic heating and aerodynamic pressure during flight. A thermal protection system panel is required to protect internal systems such as the fuel tank of the vehicle from the external environment. This study defines analytical models for heat transfer and thermal structure characteristics of the thermal protection system panel. Furthermore, the study performed parameters analysis to achieve the thermal structural integrity and to make it lighter.

  • PDF

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

Structural and Thermal Sensitivity Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 구조적 및 열적 민감도 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1634-1641
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a sensitivity analysis for structural and thermal characteristics was carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW table feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The results of the structural sensitivity analysis illustrated that the vertical stiffness of hydrostatic guideway for the RW table feed system greatly influenced the horizontal loop stiffness, and the results of the thermal sensitivity analysis illustrated that the heat generation rates at hydrostatic bearings and belt pulley greatly influenced the temperature rise of hydrostatic bearings and the deviation of thermal displacement between GW and RW.

Coupled thermal and structural analysis of roller compacted concrete arch dam by three-dimensional finite element method

  • Bayagoob, Khaled H.;Noorzaei, Jamaloddin;Abdulrazeg, Aeid A.;Al-Karni, Awad A.;Jaafar, Mohd Saleh
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.401-419
    • /
    • 2010
  • This paper focuses on the development, verification and application of a three-dimensional nite element code for coupled thermal and structural analysis of roller compacted concrete arch dams. The Ostour Arch dam located on Ghezel-Ozan River, Iran, which was originally designed as conventional concrete arch dam, has been taken for the purpose of verication of the nite element code. In this project, RCC technology has been ascertained as an alternative method to reduce the cost of the project and make it competitive. The thermal analysis has been carried out taking into account the simulation of the sequence of construction, environmental temperature changes, and the wind speed. In addition, the variation of elastic modulus with time has been considered in this investigation using Concard's model. An attempt was made to compare the stresses developed in the dam body five years after the completion of the dam with those of end of the construction. It was seen that there is an increase in the tensile stresses after five years over stresses obtained immediately at the end of construction by 61.3%.

Evaluation of Structural Integrity and Cooling Performance of 4250 kVA Power Transformer with ONAN Mode (ONAN 모드 4250kVA 변압기의 구조 건전성과 냉각 성능의 평가)

  • Yang, Chaofan;Kim, Seongik;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.48-57
    • /
    • 2021
  • The main research content of this paper is to evaluate the structural integrity and the cooling performance of 4250 kVA power transformer with ONAN(Oil Natural and Air Natural) mode. The dynamic analysis is used to verify the structural safety of the transformer by seismic loading. The transformer structure is simplified and NX software is used to build a three-dimensional model, and ANSYS commercial software is used to calculate the stress and deformation by applying corresponding load. The analysis result was evaluated whether it satisfies the design requirements according to the IEEE Std 693 standard. In terms of thermal analysis to evaluate the cooling performance, the thermal physical model is used to calculate the heat exchange between the radiator and the tank in the steady state, and the result is input into the Fluent software to calculate the internal temperature field of the transformer tank, which reduces the calculation cost of thermal fluid. Comparing the simulated hot spot temperature and top oil temperature of the transformer with the calculation results of the IEC60076 classic model, it is found that the error is only 1.9%.

HAUSAT-2 STM(Structural-Thermal Model) Development and Launch Environment Test Result Analyses (HAUSAT-2 위성 STM 개발 및 발사환경시험 분석)

  • Chang, Jin-Soo;Hwang, Ki-Lyong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.95-105
    • /
    • 2005
  • The HAUSAT-2 nanosatellite which is scheduled to launch in 2008 is being developed by SSRL(Space System Research Lab.). The HAUSAT-2 STM(Structural-Thermal Model) was developed as the first system model to verify structural and thermal design margin. The qualification level vibration and thermal tests have been conducted on STM. This paper addresses the comparison of structural analysis and test results of HAUSAT-2 STM. It was shown that the natural frequency of HAUSAT-2 STM satisfies the stiffness requirements without structural damage in the random vibration test. The assembly and integration validity were also checked out through STM.

Thermal-Hydraulic, Structural Analysis and Design of Liquid Metal Target System (액체금속 표적 시스템의 열적, 구조적 건전성 평가 및 설계)

  • 이용석;정창현
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.294-298
    • /
    • 2001
  • A research for transmutation reactor is in progress to transmute high radioactive isotopes into low radioactive ones. In this study, thermal-hydraulic and structural analysis was performed to design liquid metal target system that would be used in subcritical transmutation reactor. Diffuse plate installation was considered to enhance cooling of window. And thermal-structural analysis of window was performed varying window thickness, beam power, and coolant flow rate to determine target system design valuers. It is ensured that maximum window temperature and stress would be acceptable in the design condition.

  • PDF