• Title/Summary/Keyword: Thermal-Fluid Analysis

Search Result 808, Processing Time 0.03 seconds

Performance Analysis of Ejector-Pump Thermal Energy Conversion System Using Various Working Fluids (이젝터-펌프 온도차발전시스템의 작동유체별 성능분석)

  • Yoon, Jung-In;Seol, Sung-Hoon;Son, Chang-Hyo;Choi, Kwang-Hwan;Kim, Young-Bok;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.87-92
    • /
    • 2016
  • This research dealt with performance characteristics of OTEC system applying an ejector and additional pump. Each system using five kinds of working fluids was analyzed, and primary parameters with respect to entrainment ratio were examined: Turbine gross power, evaporation capacity, pump work, efficiency and volume flow ratio. The primary results were as following. The efficiency of ejector-pump OTEC system was dependent on entrainment of the ejector. The degree of efficiency change was different from applied working fluid, and amount of pump work was turned out to be primary factor affected system efficiency. Meanwhile, optimized entrainment ratio was different from applied working fluid since their different vapor density. System efficiency at optimized entrainmet ratio of each working fluid was around 5%, showing minor difference each other.

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF

Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition (고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.

Thermal Characteristics Analysis of a High Speed Spindle System by Using FSI Method (FSI 해석법을 이용한 고속 주축계의 열특성 해석)

  • Kim, Soo-Tae;Lee, Seog-Jun;Choi, Young-Hyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.83-88
    • /
    • 2014
  • FSI (Fluid Structure Interaction) method, in this study, has been applied to analyzing thermal characteristics of a high speed machine tool spindle system. The spindle is composed of angular contact ceramic ball bearings, a high speed built-in motor, a cooling jacket, and so on. The cooling jacket has three inlets and outlets. Using the FSI method, temperature distributions and thermal displacements of the spindle system were computed considering the heating of the front and rear bearings and the built-in motor. The results computed using the FSI method were compared with those determined by experiment and using the conventional numerical approach. The results determined using the FSI method were similar to those from the conventional numerical approach but showed better agreement with the experimental results. Therefore, it is concluded that the FSI method is useful for analyzing the thermal characteristics of high speed spindles and can be applied to the design of high speed spindles.

Comparison of the Thermal Performance with Stationary and Tracking Evacuated CPC Collectors (고정형과 추적형 Evacuated CPC 집열기의 열성능 비교)

  • Yun, Seong-Eun;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.19-25
    • /
    • 2004
  • A numerical study is performed to investigate the effect of sun tracking on the thermal performance of the evacuated compound parabolic concentrator (CPC) collectors. The evacuated CPC collectors consist of a two-layered glass tube, a copper tube and a reflector. The collector has a copper tube as an absorber and a reflector inside a glass tube. The water is used as a working fluid. The length and the diameter of the glass tube are 1,700mm and 70mm, respectively. The length and the diameter of the copper tube are 1,700mm and 25.4mm, respectively. Ray tracing analysis is carried out in order to compare absorbed heat fluxes on the absorber surface of the stationary and tracking collectors. The collected energy is calculated and compared with that on a fixed surface tilted at $35^{\circ}$ on the ground and facing south. The results indicate that the collected solar energy of the sun tracking system is significantly larger than that of a stationary collector. The sun tracking evacuated CPC collectors show a better performance with an increase in the thermal efficiency of up to 14% compared with an identical stationary collector.

Synthesis of polyphenylcarbosilane via thermal rearrangement of polymethylphenylsilane in supercritical cyclohexane

  • Shin, Hee-Yong;Ryu, Jae-Hun;Bae, Seong-Youl;Lee, Yoon-Joo;Kwon, Woo-Teck;Kim, Young-Hee;Kim, Soo-Ryong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • A new process for the synthesis of polyphenylcarbosilane (PPCS) via thermal rearrangement of polymethylphenylsilane (PMPS) in supercritical cyclohexane was proposed and investigated at reaction temperatures of $380-420^{\circ}C$, reaction times of 1-2 h, and a pressure of 15 MPa. The structure, molecular weight, and molecular weight distribution of the product were characterized by FT-IR, Si-NMR, and GPC. The ceramic yield was also measured by TGA analysis. High-quality PPCS with high molecular weight and ceramic yield can be synthesized via a supercritical process. Furthermore, this process, when compared to the conventional method, tends to moderate the reaction conditions such as reaction temperature and time. It is concluded that thermal rearrangement in supercritical fluid is an efficient and viable process in terms of the resulting yield, efficiency, and reaction time compared with those of the conventional PCS production process.

Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking (중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석)

  • Kang, Chaeuk;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

Analysis of Thermal Control Characteristics of VCHP by the Charging Mass of Non-Condensible Gas (불응축가스 주입량에 따른 VCHP의 열제어 특성)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1139-1144
    • /
    • 2005
  • This study has been performed to investigate the thermal performance of variable conductance heat pipe (VCHP) with meshed wick. The length of condenser portion in a VCHP is varied by the expansion of inert gas with the operation temperature, and the heat transport capacity is thus varied with the operating temperature. In this study, numerical evaluation of the VCHP is made for the thermal performance of VCHP, based on the diffusion model of inert gas. Water is used as a working fluid and nitrogen as a control inert gas in the copper tube. As a result, the thermal performance of VCHP has been compared with that of constant conductance heat pipe (CCHP) according to the variation of operation temperature. Maximum heat transport capacity of VCHP is mainly presented for operation temperature and the variation of operation temperature is also presented for heat transfer rate of VCHP.

Numerical Simulation on Flows inside an Engine Room with Radiator and Cooling Fan Models (방열기 및 냉각팬을 고려한 엔진룸 내부유동 해석)

  • Kim S. L.;Lee S. C.;Lee K. H.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.70-75
    • /
    • 1995
  • Recently, for the thermal system design in an engine room, the importance of the numerical analysis on the heat and fluid flow has been recognized. In the present study, the flow inside an engine room with complex geometry was analysed by use of TURBO-3D program being developed in KIST. Radiator and Cooling fan were simulated by porous media and momentum sources, and the result shows a good agreement with our expectation.

  • PDF

Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat (발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.470-476
    • /
    • 2010
  • The thermodynamic performance of closed ocean thermal energy conversion (OTEC) cycle with 1 MW gross power was evaluated to obtain the basic data for the optimal design of OTEC. The basic thermodynamic model for OTEC is Rankine cycle and the thermal effluent from power plant was used for the heat source of evaporator. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the temperature variation of thermal effluent. The saturated pressure of evaporator increased with respect to the increase of thermal effluent temperature, so the cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 1 MW gross power. As the thermal effluent temperature increases about $15^{\circ}C$, the cycle efficiency increased approximately 44%. So, it was revealed that thermal effluent from power plant is important heat source for OTEC plant. Also, if there is an available waste heat, it can be transferred heat to the working fluid form the evaporator through heat exchanger and cycle efficiency will be increased.