• Title/Summary/Keyword: Thermal-Comfort

Search Result 700, Processing Time 0.024 seconds

Design Requirements by Evaluating Comfort while Wearing Korean Naval Duty Uniforms for Summer and Winter (대한민국 동하절기 해군 함상복의 착용쾌적성 평가를 통한 디자인 요소 요구성능 분석)

  • Lee, Hyo-Hyun;Shin, Sora;Lee, Joo-Young
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.3
    • /
    • pp.419-435
    • /
    • 2016
  • The purpose of the present study was to suggest the design requirements for Korean naval duty uniforms by evaluating the physiological and psychological comfort while wearing the uniforms. Two sets of wear trials were conducted with summer uniforms(eight young males) and winter uniforms(seven other young males). The summer wear trial consisted of 10-min rest, 60-min exercise, and 10-min recovery at an air temperature($T_{air} $) of $33^{\circ}C$ and 62%RH, followed by 10-min recovery at a $T_{air} $ of $23^{\circ}C$ and 64%RH(total 90 min). The winter wear trial consisted of 20-min rest at $T_{air} $ $20^{\circ}C$ and 55%RH, 25-min rest, 30-min exercise, and 35-min recovery at a $T_{air} $ of 0oC and 43%RH(total 110 min). Rectal and seven skin temperatures, clothing microclimate, heart rate, oxygen consumption, total sweat rate, and subjective perceptions were measured during the wear trials. By evaluating the experimental results from the wear trials, we extracted the following psycho-physiological design requirements to improve the current Korean naval uniforms: (1) It is important to maintain the skin temperatures within their comfort range, which depends on the body region (higher than $30^{\circ}C$ in winter, but less than $35^{\circ}C$ in summer). (2) In summer, the feet should be protected from the high heat of the ship floor surface. (3) In summer, sweat from the back should be sufficiently absorbed and allowed to dry quickly.

Mobility and Thermal Comfort Assessment of Personal Protective Equipment for Female Healthcare Workers: Impact of Protective Levels and Body Mass Index (감염병 대응 개인보호복의 동작성 및 열적 쾌적성: 보호 수준 및 여성 착용자 체격의 영향)

  • Do-Hee Kim;Youngmin Jun;Ho-Joon Lee;Gyeongri Kang;Cho-Eun Lee;Joo-Young Lee
    • Fashion & Textile Research Journal
    • /
    • v.26 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • This study aimed to assess the mobility and thermal comfort of personal protective equipment (PPE) among female healthcare workers, taking into account wearers' physique and PPE protection levels. A total of 16 participants (age: 26.3 ± 8.3 y, height: 161.5 ± 7.3 cm, body weight: 57.1 ± 11.0 kg, BMI: 21.9 ± 3.6), representing diverse body types, underwent four PPE conditions: L (Low_Plastic gown ensemble), M (Medium_Tyvek 400), H (High_Tyvek 800J with Powered Air Purifying Respirator [PAPR]), and E (Extremely high_Tychem 2000 with PAPR, Bib apron, and Chemical-resistant gloves). The mobility protocol consisted of 10 different tasks in addition to donning and doffing. The 10 tasks were repeated twice at an air temperature of 24.3 ± 0.1℃, 59±4%RH. Findings revealed a disproportionate relationship between PPE protection and wearer discomfort. Significant differences in clothing microclimate and total sweat rate were observed between the lowest (L) and highest (E) protection levels (p < 0.01), while distinctions among medium levels were inconclusive. Subjective evaluations favored conditions H and L over M and E (p < 0.05), indicating reduced heat, and humidity, increased comfort, and lower exertion. Instances of mobility discomfort, specially in the small body type group, underscored the need for a suitable PPE size system for Korean adult female medical workers. Furthermore, enhancements in gloves, shoe cover, and PAPR hood designs are essential for improving ease of movement and preventing hindrance.

A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers (두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.

Component Analysis of Thermally Activated Building System in Residential Buildings

  • Chung, Woong June;Lee, Yu Ji;Yoo, Mi Hye;Park, Sang Hoon;Yeo, Myoung Souk;Kim, Kwang Woo
    • Architectural research
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • The packaged terminal air conditioner, the typical cooling system for the residential buildings, consumes a large amount of electricity in a short period time during peak hours. In order to reduce the peak load and conserve the electricity, the thermally activated building system can be used as a secondary system to handle the partial cooling load. However, the thermally activated building system may cause condensation and under-cooling. Thus, design of both systems should be performed with careful investigation in characteristics of both systems to amplify the advantages. Since the thermally activated building system has the time-delay effect which may cause under-cooling, the system is designed to handle the base load of the building. Hence, simple simulation with EnergyPlus was performed to observe the characteristics of cooling load in residential buildings. Once the possible range of the load handling ratio of the thermally activated building system was decided, characteristics of system was analyzed in terms of hardware component and operation parameters. The hardware components were analyzed in plant and system aspects and the operation parameter was evaluated in the thermal comfort aspect. As the load handling ratio increased, the thermal comfort increased due to the lower radiant mean temperatures. Within the range of thermal comfort, the several adjustments were made in setpoint temperature and electricity consumptions of difference cases were observed to decide which components and parameters were important for designing the systems.

Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

  • Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a "universal index," which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.

Analysis of Comfortable Environment in the Classroom with Humidification and Ventilation in Winter (겨울철 가습 및 환기에 따른 교실내 쾌적환경 분석)

  • Cheong, Seong-Ir;Sheng, Nai-Li;Kim, Doo-Hyun;Lee, Jae-Keun;Hwang, Yu-Jin;Park, Jong-Hoon;Seo, Seok-Jang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.402-408
    • /
    • 2009
  • In this paper, the effects of ventilation and humidification on thermal comfort and indoor air quality(IAQ) were evaluated in a classroom when a heat pump system was operated in winter. Thermal comfort parameters, such as temperature, relative humidity, globe temperature and air velocity, were measured at 9 points in the classroom. The concentration of $CO_2$ and total suspended particles(TSP) in the classroom were measured in order to analyze IAQ. Temperature distribution in the classroom was decreased by $2{\sim}5^{\circ}C$ when the ventilation system and the humidifier were operated. When the relative humidity was adjusted to 60% by operating the humidifier and the ventilation system, the predicted mean vote(PMV) in the classroom was within the comfortable range of $-0.5{\sim}0.5$. When the ventilation system was operated, the average concentration of $CO_2$ and TSP were decreased by 645 ppm and 0.17 $mg/m^3$, respectively. This paper suggests the humidification and ventilation conditions to maintain the comfortable environment in the school classroom in winter experimentally.

Characteristics of Thermal Variations with the Different Land Covers in an Urban Area (도시 지역에서 토지 피복에 따른 열 변이 특성)

  • Park, Sung-Ae;Kong, Hak-Yang;Kim, Seung-Hyun;Park, Sungmin;Shin, Young-Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • This study was conducted to analyze the effect of the different land covers of an urban park (Hyowon park) in downtown Suwon on the urban thermal variations during a hot summer. The effect of the air temperature reduction in the urban park was 4.4%-4.5% for the downtown residence (Maetan-dong). This value was about 0.8% lower than that of the outskirts residence (Sanggwanggyo-dong). The daily mean temperature, daily maximum temperature, summer day and heat wave frequency were measured under the different land covers (cement-block, grass, pine-grass, shading area and mixed forest) showed these values generally decreased under natural land cover types. Daily minimum temperature and tropical night frequency didn't seem to correlate with the land cover types. Means of thermal comfort indices (wet bulb globe temperature, heat index and discomfort index) in the shading area, mixed forest and the pine-grass types were lower than those of cement block and grass types. However the levels of those indices were equal to 'very high' or 'caution' levels in the afternoon (13:00-15:00). In the morning (06:00-08:00), thermal comfort indices of the urban park didn't correlate with land cover types. Therefore, to reduce heat stress and to improve the thermal comfort in urban parks, an increase in the area of natural land cover such as grass, forest and open spaces is required.

Analysis of the Thermal Environment Characteristics of Thatched Roof for Eco-friendly Rural Housing Development -Focused on the Neolithic Thatched Roof Dugout Hut- (농촌 친환경 주거 개발을 위한 이엉지붕 열환경 특성 분석 -신석기시대 이엉지붕 움집을 대상으로-)

  • Song, Heon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Due to the development of civilization, the humans is privileged the rich of technologies for housing thermal environment. But, this kind of technological development caused enough trouble of energy excessive consumption. For solve this problem, many researchers strive to exploit the low energy sustainable techniques. For such a reason, the eco-friendly techniques of vernacular house are resurfacing. These traditional techniques are applied to a development of eco-friendly modern housing. They are no longer recognized as outdated products. On this context, this study proposes an scientific analysis on the thermal environment characteristics of Neolithic thatched-roof dugout hut(Um house). So far the several studies have been carried out in viewpoint of the history and structural compositions of the Um house which has been used as the normal housing for about 1000 years in the Neolithic era, however the thermal characteristics analysis of the Um house has never been studied. Um house is not a housing which has been composed by the scientific analysis or architectural design technology, but evolved empirically over a long period. This study on the thermal environment characteristics of Um house would provide basic information for the development of korean eco-friendly rural housing by korean climate characteristics. In this study, the thermal environmental characteristics of the Um house in the Neolithic era was analysed experimentally. The results of this study could be summarized as follows: 1. When the solar insolation and the ambient temperature in the daytime were $420W/m^2$ and $17^{\circ}C$ respectively, the surface temperature of the Um house roof covered with the rice straw was $37^{\circ}C$ and that in the roof $32^{\circ}C$, and in the conditions above the air temperature in the room was $15^{\circ}C$. 2. When the ambient relative humidity was 40%, that in the room of the Um house 50%, and at the ambient relative humidity of 90~100%, that in the room was 60%. 3. Through the experimental analysis, it was verified that the enthalpy and relative humidity is in an inverse relationship. 4. In general the comfort degree in the living space is changed with the seasonal climate, also in this study, the comfort degree in the room of the Um house in October and November was higher than that in May and June.

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

A Measurement and Evaluation on the Indoor Thermal Conditions in Summer of a New Training ship (신조 운항실습선의 여름철 실내 온열환경 실측평가)

  • Shin, Dong-Keol;Lee, Jin-Uk;Lee, Hyong-Ki;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.276-283
    • /
    • 2008
  • The purpose of this study is to measure and analyze the ship's indoor thermal conditions and also to integrate experimental database of those which are supplied and controlled by marine HVAC. On this study, temperature, humidity and air volume of 6 different needs' cabin are measured like previous report on a newly-launched training ship during 25th through 27th of July, 2007. Followings are the results of this study. (1)The air supply volumes to each cabins are measured 250CMH(Recreation room), 800CMH(Conference room), 1.000CMH(Bridge), 5,100CMH(Lecture room) respectively. (2)The temperatures are maintained at $21{\sim}27^{\circ}C$ in almost cabins through measuring period, but the temperatures are fluctuated over ${\pm}4^{\circ}C$ at the bridge and conference room. (3)The relative humidities are shown between $40{\sim}60%$ known as comfort conditions, but the conference room is needed to dehumidified because of over 70% humidity. (4)From the student cabins' measurements which have different supply diffuser(s), it is clear that the design is suitable for this case. (5)Because of temperature diversities, only 32% among the measured data are satisfied with the comfort standard range proposed by ASHREA.