• Title/Summary/Keyword: Thermal transmittance(U-value)

Search Result 9, Processing Time 0.027 seconds

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

A comparative analysis of the total window thermal transmittance simulation result according to the evaluation method of effective conductivity(λeff) of frame cavity - Focused on unventilated frame cavity simulation results of single window - (창틀 공기층의 유효 열전도율(λeff) 산정방법 차이가 창 전체 열관류율(Uw) 시뮬레이션 결과에 미치는 영향에 대한 비교 분석 - 단창 창틀의 비환기 공기층에 대한 시뮬레이션을 중심으로 -)

  • Lee, Yong-jun;Oh, Eun-joo;Kim, Sa-kyum;Choi, Gyeong-seok;Kang, Jae-sik
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • Purpose: It is difficult to calculate frame U-value because of the two reason. First is selection of air properties in cavity. Second is calculation method in window frame. For this reason, it is important to decide cavity properties in window frame. However, international standards offered different method(ISO 15099, ISO 10077) and air properties was changed according to the two methods. The aim of this study was to suggest method for deriving accurate frame U-value using international standard methods and CFD simulation. Method: First, this study conducted analysis calculation method of ISO 15099 and ISO 10077. And, CFD simulation conducted based on same condition. Finally, ISO calculation and CFD simulation results were verified through comparison with real experiment results. Result: The results show that effective conductivity of ISO 15099 was the highest value. ISO 10077 and CFD result followed. The convergent values of ISO 10077 was the highest. ISO 15099 and CFD followed. ISO calculation reflecting CFD simulation results will reduce error with experimental results.

Evaluation on the Solar Heat Gain Coefficient of Glazing System installed in internal shading device by experiments according to the NFRC 201 (NFRC 201 실험방법에 의한 내부 차양장치가 적용된 창호의 일사획득계수 평가)

  • Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Recently the researchers has been interested in the development of the high performance windows such as solar control window using automatic shading devices, air-flow window, selective coating window. In order to assess the energy performance of total fenestration system, the net energy gains or losses through the glazings and windows should be evaluated. It depends on the thermal transmittance (U-value) and the total solar energy transmittance (SHGC, g-value). This study aims to measure the solar heat gain coefficient according to the NFRC 201 standard test method. In results, we could find the result of different SHGC of the glazing system with a different slat angles. The SHGC in case of $90^{\circ}$ of internal slat angle with regard to the window surface is about 0.56, that in case of $45^{\circ}$ is about 0.49 and that in case of $0^{\circ}$ is about 0.33. Significant dependence on the solar radiation intensity and incident angle was found in comparison of the measured and simulated SHGC.

A Study on the Thermal Properties of Architectural Greenery System Typology Based on the Contemporary Architectural Trend (현대건축경향에 입각한 건축물녹화시스템 유형의 열적물성치에 관한 연구)

  • Kim, Tae-Han;Lee, Ju-Hee;Kim, Chul-Min
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2013
  • Recently, greenery system is frequently applied on buildings and artificial grounds to improve urban ecological functionality. Specifically, architectural greenery is also known as an architectural language that can meet the sustainable design concept of architects. Although the architectural greenery system can be optimized through an interdisciplinary approach between architecture, horticulture and landscape- architecture, there is a problem of communication on the ideal gap between them. Therefore, this study is expected to establish the comtemporary architecture as hi-tech and the organic architecture in internationalism. Moreover, it can analyze the case study on architectural greenery system designed by a Pritzker Prize winner who represents the comtemporary architectural trend. In this analysis, we calculate and compare the U-value of the free-form surface system based on the international standards: ISO and CIBSE etc. Moreover, we calculate a change of artificial soil transmittance respect on compounding ratio of the bottom ash and pearlite. In the case of California Academy of Science by Renzo Piano, total transmittance of the greenery system results in 48% of domestic thermal insulation standard in dry condition. This result will be used as a basic study to promote developing the advanced system based on the concept of consilience.

Comparison Analysis of Building's Heating Energy Consumption in the Apartment Complex - Focused on Apartment in Daejeon - (공동주택 단지 내 동별 난방에너지소요량 비교 분석 - 대전지역 아파트단지를 중심으로 -)

  • Jang, Young-Hye;Kim, Jeong-Gook;Kim, Jonghun;Jeong, Hakgeun;Hong, Won-Hwa;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: Apartment is a typical residential type in Korea. In the past, apartment types were very monotonous. But today, the types of complex are changed because personal needs have been diversified and personalized. In order to meet those needs, construction companies are constructing various types of apartments. The more apartment types are diverse, the more the energy problems are taken place. So, the purpose of this study is to solve the problem of energy gap in the same complex through improving the thermal transmittance of wall. Method: Heating energy consumption of Building Energy Efficiency Rating System and heating energy usage of apartment show a similar trend on the graph. In order to identify the best position of heating energy consumption difference reduction, we change the building's U-value of front, back, side walls. Result: In the A complex, maximum and minimum heating energy consumption building's shapes are flat. the best efficiency is side U-value change and the worst is front change. In the E complex, maximum heating energy consumption building's shape is tower and minimum building shape is flat. Consequently, the front and back wall performance change was little effect to reduce energy gap, while the change of side wall's U-value show the great reduction between building's energy consumptions.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

Insulation Details and Energy Performance of Post-Beam Timber House for Insulation Standards (단열 기준에 따른 기둥-보 목조주택의 단열 상세 및 에너지 성능)

  • Kim, Sejong;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.876-883
    • /
    • 2015
  • Han-green project, which pursues Korean style post and beam timber house with traditional construction technique of Han-ok, has been carried out in KFRI (Korea Forest Research Institute) since 2006. Recently, the improvement of its building energy performance was studied with energy-saving elements. This study was conducted to provide the insulation details of building envelopes in a post-beam timber house for recent enhanced insulation standards and following effect on building energy performance. The level of thermal transmittance (U-value) values of building envelopes was composed of two stages: present Korean insulation standards and passive house. To evaluate building energy performance, the building airtightness values of two stages was ACH50 = $3.0h^{-1}$ for common domestic timber house constructed recently, and ACH50 = $0.6h^{-1}$ for passive house. Consequently, four cases of the building energy performance according to the combination of U-value with airtightness were evaluated. The test house for evaluation was located in Seoul and its energy performance was evaluated with CE3 commercial building energy simulation program. The result showed that enhanced insulation from level I to II reduced $14kWh/(m^2{\cdot}a)$ of annual heating energy demand regardless of airtightness.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.