• 제목/요약/키워드: Thermal transient

Search Result 909, Processing Time 0.031 seconds

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Dynamic performance prediction of a Supercritical oil firing boiler - Load Runback simulation in a 650MWe thermal power plant (초임계 오일 연소 보일러의 동특성 예측 연구 - 650MWe급 화력발전소의 Load Runback 모사)

  • Yang, Jongin;Kim, Jungrae
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • Boiler design should be desinged to maximize thermal efficiency of the system under imposed load requirement and a boiler should be validated for transient operation. If a proper prediction is possible on the transient behavior and transient characteristics of a boiler, one may asses the performance of boiler component, control logics and operation procedures. In this work, dynamic modeling method of boiler is presented and dynamic simulation of load runback scenario was carried out on suprecritical oil-firing boiler.

  • PDF

Simplified Technique for 3-Dimensional Core T/H Model in CANDU6 Transient Simulation

  • Lim, J.C.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.113-116
    • /
    • 1995
  • Simplified approach has been adopted for the prediction of the thermal behavior of CANDU reactor core during power transients. Based on the assumption that the ratio of mass flow rate for each core channel does not vary during the transient, quasy-steady state analysis technique is applied with predicted core inlet boundary conditions(total mass flow rate and specific enthalpy). For restricted transient case, the presented method shows functionally reasonable estimation of core thermal behavior which could be implemented in the fast running reactor simulation program.

  • PDF

Deterministic Fracture Mechanics Analysis of Pressurized Thermal Shock

  • M. J. Jhung;Park, Y. W.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.470-484
    • /
    • 1998
  • An analysis program for the evaluation of pressure vessel integrity under pressurized thermal shock (PTS) is developed. For given material properties and transient history such as temperature and pressure, the stress distribution is calculated and then stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. Using this program a round robin problem of PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study. The allowable maximum reference nil-ductility transition temperatures are determined for various crack sizes.

  • PDF

Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source

  • Jabbari, M.;Vaghari, A.R.;Bahtui, A.;Eslami, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.551-565
    • /
    • 2008
  • Transient solution of asymmetric mechanical and thermal stresses for hollow cylinders made of functionally graded material is presented. Temperature distribution, as function of radial and circumferential directions and time, is analytically obtained, using the method of separation of variables and generalized Bessel function. A direct method is used to solve the Navier equations, using the Euler equation and complex Fourier series.

J-Integral under Transient Temperature State (천이온도 상태에서의 J적분)

  • 이강용;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1781-1791
    • /
    • 1991
  • For the cracked plate under transient temperature distribution, J-integral is expressed in the form of line integral by using convolution integral. The J$_{1}$ integral is calculated for a through line center cracked steel plate under thermal and mechanical loading conditions and the calculated values are in good agreement with previous results. The effect of inertia term on the J$_{1}$ integral is not negligible for a glass but for a steel. For the glass plate, the rates of J$_{1}$ integral value to time increase if the values of material properties such as specific heat, thermal conductivity, thermal diffusivity and Young`s modulus as well as crack length and temperature difference in cracked edge increase.

Thermal Transient Characteristics of Initiator with STS 304 Bridgewire (STS 304 발열선 착화기의 열전이 특성)

  • Yoon, Ki-Eun;Ryu, Byung-Tae;Choi, Chang-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • Thermal transient tests were performed on the electric initiator with STS 304 bridgewire(diameter 2.3 mil) and $Zr-KCIO_4$ primary charge. Analysing the test data using fitted Wire Model shows that the thermal characteristic parameter related to primary charge is changed sharply around $300^{\circ}C$. It is determined that this phenomenon is due to endothermic reaction from phase transition of $KCIO_4$, which is a component of the primary charge.

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

  • Choi, Woo-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2011
  • Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.

Analyzing the characteristics of Thermal Transient on MOSFET depending on Heat Sink surface area (히트싱크 크기에 따른 MOSFET의 열전달 특성변화 분석)

  • Kim, Ki-Hyun;Seo, Kil-Soo;Kim, Hyoung-Woo;Kim, Sang-Choel;Bahng, Wook;Kang, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.170-171
    • /
    • 2005
  • Generally when Power MOSFET is operated, a heat sink is attached to it to emit heat caused by the operation. As the surface area of a heat sink is smaller, the thermal impedance is larger, which causes a negative influence on the characteristics of the chips and the devices and shortens the lifespan of them. In this experiment, we've compared and analysed different effects of heat sinks with 5 different surface areas on the characteristics of Thermal Transient when they are applied respectively.

  • PDF

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.