• 제목/요약/키워드: Thermal shock fracture toughness

검색결과 40건 처리시간 0.026초

열간단조 금형강의 열충격특성연구 (Analysis of Thermal Shock in Tool Steels for Hot Forging)

  • 김정운;김봉준;조이석;문영훈
    • 열처리공학회지
    • /
    • 제14권3호
    • /
    • pp.155-159
    • /
    • 2001
  • The thermal shock resistance has been investigated and compared in three hot-work tool steels. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. In this study, new test method is proposed to measure the thermal shock resistance. New method is basically based on Uddeholm' thermal shock test but some modification has been properly applied. Based on these results, some critical temperature($T_{fractures}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. The specific values of ${\Delta}T$, the temperature difference between holding temperature and $T_{fractures}$, has been successfully used as a measure of the thermal shock resistance in this study, the results showed that the thermal shock method used in this study was properly modified.

  • PDF

Deterministic structural and fracture mechanics analyses of reactor pressure vessel for pressurized thermal shock

  • Jhung, M.J.;Park, Y.W.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.103-118
    • /
    • 1999
  • The structural integrity of the reactor pressure vessel under pressurized thermal shock (PTS) is evaluated in this study. For given material properties and transient histories such as temperature and pressure, the stress distribution is found and stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. A round robin problem of the PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study, and the evaluation results are discussed. The maximum allowable nil-ductility transition temperatures are determined for various crack sizes.

Studies on the effect of thermal shock on crack resistance of 20MnMoNi55 steel using compact tension specimens

  • Thamaraiselvi, K.;Vishnuvardhan, S.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3112-3121
    • /
    • 2021
  • One of the major factors affecting the life span of a Reactor Pressure Vessel (RPV) is the Pressurised Thermal Shock (PTS). PTS is a thermo-mechanical load on the RPV wall due to steep temperature gradients and structural load created by internal pressure of the fluid within the RPV. Safe operating life of a nuclear power plant is ensured by carrying out fracture analysis of the RPV against thermal shock. Carrying out fracture tests on RPV/large scale components is not always feasible. Hence, studies on laboratory level specimens are necessary to validate and supplement the prototype results. This paper aims to study the fracture behaviour of standard Compact Tension [C(T)] specimens, made of RPV steel 20MnMoNi55, subjected to thermal shock through experimental and numerical investigations. Fracture tests have been carried out on the C(T) specimens subjected to thermal transient load and tensile load to quantify the effect of thermal shock. Crack resistance curves are obtained from the fracture tests as per ASTM E1820 and compared with those obtained numerically using XFEM and a good agreement was found. A quantitative study on the crack tip plastic zone, computed using cohesive segment approach, from the numerical analyses justified the experimental crack initiation toughness.

열충격하에 있는 반타원균열에 대한 파괴건전성 평가 (Integrity Evaluation of Semi-Elliptical Crack Under Thermal Shock)

  • 이강용;김종성;김건영
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3136-3148
    • /
    • 1994
  • This paper proposed the method of fracture integrity evaluation for semi-elliptical crack. Plane strain fracture toughnesses are used to compare with the thermal shock stress intensity factors for semi-elliptical crack obtained by Vainshtok weight function method. The method is applied to the finite Cr Mo V and 2.25Cr Mo steel plates with semi-elliptical crack under the thermal shock. For the purpose, tensile property and fracture toughness with respect to the temperature are measured. To verify the method, thermal shock experiments are carried. The theoretical predictions are in good agreement with the experiments.

가압열충격 사고에 대한 원자로 용기의 최대 허용 기준무연성천이온도 (Maximum Allowable $RT_{NDT}$ of Nuclear Reactor Vessel for Pressurized Thermal Shock Accident)

  • 정명조;박윤원;송선호
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.153-160
    • /
    • 1998
  • 본 연구에서는 가압열충격 사고로 소형 냉각재 상실사고를 가정하여 냉각재의 온도와 압력의 이력으로 부터 용기 벽의 온도분포를 구하고, 이로 부터 열응력과 압응력을 해석적으로 구하였다. 또 균열 선단에서의 응력강도계수와 파괴인성치를 ASME코드의 방법을 이용하여 구하였고, 이들을 시간에 따라 비교하여 균열의 진전여부를 평가하였다. 원자로 용기 벽에 존재하는 여러 형태의 균열이 견딜 수 있는 최대 기준무연성천이온도를 결정하였으며 평가 결과에 대하여 고찰하였다.

  • PDF

가압열충격에 대한 원자로 용기의 확률론적 파괴역학해석 - 잔류응력 및 파괴인성곡선의 영향 - (Probabilistic Fracture Mechanics Analysis of Reactor Vessel for Pressurized Thermal Shock - The Effect of Residual Stress and Fracture Toughness -)

  • 정성규;진태은;정명조;최영환
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.987-996
    • /
    • 2003
  • The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability Is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated.

Deterministic Fracture Mechanics Analysis of Pressurized Thermal Shock

  • M. J. Jhung;Park, Y. W.
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.470-484
    • /
    • 1998
  • An analysis program for the evaluation of pressure vessel integrity under pressurized thermal shock (PTS) is developed. For given material properties and transient history such as temperature and pressure, the stress distribution is calculated and then stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. Using this program a round robin problem of PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study. The allowable maximum reference nil-ductility transition temperatures are determined for various crack sizes.

  • PDF

가압열충격에 의한 OPR1000 원자로용기의 파손확률 민감도 해석 (Sensitivity Analyses for Failure Probabilities of the OPR1000 Reactor Vessel Under Pressurized Thermal Shock)

  • 오창식;정명조;최영인
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.40-49
    • /
    • 2019
  • In this paper, failure probabilities of the OPR1000 reactor vessel under pressurized thermal shock (PTS) were estimated using the probabilistic fracture mechanics code, R-PIE. Input variables of initial crack distribution, crack size, copper contents, and upper shelf toughness were selected for the sensitivity analyses. A wide range of the input data were considered. Through-wall cracking frequencies determined by the product of the vessel failure probability and the corresponding occurrence frequency of the transient were also compared to the acceptance criterion. The results showed that transient history had the most significant impact on the vessel failure probability. Moreover, conservative assumptions resulted in extremely high through-wall cracking frequencies.

가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석 (Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock)

  • 박재학;박상윤
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF

$Al_2O_3-ZrO_2/A_2O_3$-TZP 세라믹스의 제조 및 기계적.전기적 특성 (Mechanical and Electrical Characteristics of $Al_2O_3-ZrO_2/A_2O_3$-TZP Structural Ceramics)

  • 박재성;남효덕;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.335-338
    • /
    • 1999
  • The effect of monoclinic $ZrO_2$(pure) and tetragonal $ZrO_2$ containing 5.35wt% $Y_2$$O_3$(Y-TZP) addition on the mechanical properties and thermal shock resistance of $Al_2$$O_3$ ceramic were investigated. The addition of $ZrO_2$(m) and Y-TZP increased sintering density of $Al_2$$O_3$. The vickers hardness increased with increasing the volume fraction of Y-TZP going through a maximum at 20wt%. The hardness of the specimens was found to be depend on the sintering density. With increasing the volume fraction of $ZrO_2$(m) and Y-TZP, the fracture toughness of the composite is increased. This result may be taken as evidence that toughening of ${Al_2}{O_3}$ can also be achieved by the transformation toughening and microcrack toughening of $ZrO_2$. The property of the& shock for ${Al_2}{O_3}$-$ZrO_2$ composites was improved by increasing the volume fraction of monoclinic $ZrO_2$(pure).Grain size increased with increasing the volume fraction of $ZrO_2$.

  • PDF