• 제목/요약/키워드: Thermal runaway

검색결과 84건 처리시간 0.026초

Zn-Pr-Co-Cr-Er 산화물계 바이스터의 전기적 성질 (Electrical Properties of Zn-Pr-Co-Cr-Er Oxides-based Varistors)

  • 남춘우;류정선
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.362-369
    • /
    • 2001
  • The electrical properties of varistors consisting of Zn-Pr-Co-Cr-Er oxides were investigated in the Er$_2$O$_3$content range of 0.0 to 2.0 mol%. the varistors without Er$_2$O$_3$ exhibited a relatively low nonlinearity, which was 14.24 in the nonlinear exponent and 21.47 $\mu$A in the leakage current. However, the varistors with Er$_2$O$_3$ sintered at 1335$^{\circ}C$ for 1h exhibited very high nonlinear exponent of 70, in particular, reaching a maximum value of 78.05 in 2.0 mol% Er$_2$O$_3$, and those sintered at 1335$^{\circ}C$ for 2h exhibited the nonlinear exponent close to 50, in particular, reaching a maximum value of52.76 in 0.5 mol% Er$_2$O$_3$. The others except for 0.5 mol% Er$_2$O$_3$-added varistors exhibited very high instability resulting in a thermal runaway within a short time, even a weak DC stress. Increasing soaking time decreased the nonlinearity, but increased the stability. The varistors containing 0.5mol% Er$_2$O$_3$ sintered for 2h exhibited excellent stability, in which the variation rate of the varistor voltage and nonlinear exponent was -1.70% and -7.15%, respectively, under more severe DC stress such as (0.80 V$_{1mA}$/9$0^{\circ}C$/12h)+(0.85 V$_{1mA}$/115$^{\circ}C$/12h)+(0.90 V$_{1mA}$/12$0^{\circ}C$/12h)+(0.95 V$_{1mA}$/1$25^{\circ}C$/12h)+(0.95 V$_{1mA}$/15$0^{\circ}C$/12h).TEX>/12h).

  • PDF

전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석 (Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles)

  • 오의영;민동석;한지윤;정승호;강태선
    • 한국가스학회지
    • /
    • 제23권1호
    • /
    • pp.54-61
    • /
    • 2019
  • 휴대용 전자기기의 시장이 성장함에 따라서 Lithium Ion Battery(LIB)의 수요 또한 증가하고 있다. LIB는 다른 2차 전지에 비해 높은 효율성을 보이지만 열 폭주(Thermal runaway)로 인한 폭발/화재의 위험성이 있다. 특히나 대용량 LIB cell을 탑재한 Electric Vehicle(EV)의 경우 화재로 발생하는 대량의 독성 가스로 인한 위험성 또한 존재한다. 따라서 사고 피해를 최소화하기 위한 EV 화재로 발생하는 독성 가스의 위험성 분석이 필요하다. 이 연구에서는 EV의 화재로 발생하는 독성 가스의 유동을 전산유체역학(Computational Fluid Dynamic; CFD)을 이용하여 해석하였다. 문헌 조사 결과와 국내 EV 자료를 기반으로 시나리오를 설정하여 시나리오 발생 경과시간에 따른 독성 가스의 확산을 수치 해석하여 위험성에 대하여 분석 하였다. 이 연구는 EV 화재로 인한 독성 가스의 위험성을 분석하여 사고 발생에 의한 인명, 재산피해를 최소화하는데 의의를 가진다.

전기차 화재 실험 및 대응방안에 관한 연구 (An Experiment Study on Electric Vehicle Fire and Fire Response Procedures)

  • 남기훈;이준식
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2024
  • Lithium-ion batteries (LIB) are widely used in various sectors, such as transportation (e.g., electric vehicles (EV)) and energy (e.g., energy storage facilities) due to their high energy density, broad operating temperature (-20 ℃ ~ 60 ℃), and high capacities. LIBs are powerful but fragile on external factors, including pressure, physical damage, overheating, and overcharging, that cause thermal runaway causing fires and explosions. During a LIB fire, a large amount of oxygen is generated from the decomposition of ionogenic materials. A water fire extinguisher that helps with cooling and suffocating must be essentially required at the same time. In fact, however, it is difficult to suppress LIB fires in the case of EVs because a LIB is installed with a battery pack housing that interrupts direct extinguishing by water. Thus, this study aims to investigate effective fire extinguishing measurements for LIB fires by using an EV. Relevant documents, including research articles and reports, were reviewed to identify effective ways of LIBs fire extinguishing. A real-scale fire experiment generating thermal runaway was carried out to figure out the combustion characteristics of EVs. This study revealed that the most effective fire extinguishing measurements for LIB fires are applying fire blankets and water tanks. However, there is still a lack of adequate regulation and guidelines for LIB fire extinguishment. Taking this into account, developing functional fire extinguishment measurements and available regulatory instruments is an urgent issue to secure the safety of firefighters and citizens.

니트로페닐하이드라진의 열분해 특성에 관한 연구 (A Study on the Thermal Decomposition Characteristics of Nitrophenylhydrazine)

  • 김관응;이근원
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.75-79
    • /
    • 2001
  • For handling and storage of reactive chemicals, the hazard evaluations have been extremely important. In the chemical industry, the most concerns are focused on the thermal harzards such as runaway reactions and thermal decompositions, which are mostly governed by thermodynamics and reaction kinetics or these reactive chemical in the system. This study no investigated the thermal decomposition characteristics of nitrophenylhydrazine isomers by using differential scanning calorimeter(DSC) and accelerating rate calorimeter(ARC). Experimental results showed that exothermic onset-temperatures in nitrophenylhydrazine(NPH) isomers were about 160-$210^{\circ}C$ by DSC and 100-$150^{\circ}C$ by ARC. The decomposition temperature acquired by ARC was about 50-$60^{\circ}C$ lower than that by DSC. Reaction heats were about 40-100cal/g by DSC and 330-750ca1/g by ARC. While ortho isomer of NPH show two distinct exothermic peaks, para isomer shows a single peak in DSC curves. The first exothermic peak for 2-NPH is mainly due to intramolecular dehydration forming 1-hydroxybenzotriazole(HOBT) and the second exothermic peak is mainly due to the decomposition of HOBT formed in the first step of decomposition. The exothermin peak in the DSC curve for 4-NPH is mainly due to dissociation of hydrazino and nitro groups.

  • PDF

상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구 (Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material)

  • 윤재형;현수웅;정희준;신동호
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.34-45
    • /
    • 2023
  • When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.

열 하중에 의한 AP 추진제의 발화특성 연구 (Time to ignition analysis of AP composite propellant induced by thermal loading)

  • 김기홍;이경철;곽민철;김용현;도영대;김창기;유지창;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.207-210
    • /
    • 2009
  • 고체 로켓 추진제로 널리 사용되는 물질은 AP/HTPB 복합추진제이다. 고체 로켓 주위에 열 하중이 가해진다면(화재 등) 추진제가 발화할 수 있고, 사고의 원인이 된다. 본 연구에서는 AP/HTPB 복합추진제의 주위에 열 하중을 가함으로써 AP/HTPB의 발화특성을 확인해 보았다.

  • PDF

유전 알고리즘을 활용한 전기 자동차 배터리 방열성능 향상을 위한 가이드 베인 최적설계 (Optimal Design of Guide Vane for Improvement of Heat Removal Performance of Electric Vehicles Battery Using Genetic Algorithm)

  • 송지훈;김윤제
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.55-61
    • /
    • 2022
  • Along with global environmental issues, the size of the electric vehicle market has recently skyrocketed. Various efforts have been made to extend mileage, one of the biggest problems of the electric vehicles, and development of batteries with high energy densities has led to exponential growth in mileage and performance. However, proper thermal management is essential because these high-performance batteries are affected by continuous heat generation and can cause fires due to thermal runaway phenomena. Therefore, thermal management of the battery is studied through the optimal design of the guide vanes, while utilizing the existing battery casing to ensure the safety of the electric vehicles. A battery from T-company, one of a manufacturer of the electric vehicles, was used for the research, and the commercial CFD software, ANSYS CFX V20.2, was used for analysis. The guide vanes were derived through optimal design based on a genetic algorithm with flow analysis. The optimized guide vanes show improved heat removal performance.

상변화 물질을 이용한 열전지 단열성능 향상에 관한 연구 (Enhancement of Thermal Insulation Performance with Phase Change Material for Thermal Batteries)

  • 이재인;하상현;김기열;정해원;조성백
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.469-475
    • /
    • 2016
  • Thermal batteries are primary reserve power sources, which are activated upon the melting of eutectic electrolytes by the ignition of heat sources. Therefore, sufficient thermal insulation is absolutely needed for the stable operation of thermal batteries. Currently, excessive amount of heat sources is being used to compensate the heat loss in the cell stack along with the insertion of metal plates and thermal insulators to reserve heat at the both ends of cell stack. However, there is a possibility that the excessive heat flows into the cell stack, causing a thermal runaway at the early stage of discharge. At the same time, the internal temperature of thermal batteries cannot be maintained above the battery operating temperature at the later stage of discharge because of the insufficient insulation. Therefore, the effects of Phase Changing Material(PCM) plates were demonstrated in this study, which can replace the metal and insulating plates, to improve the thermal insulation performance and safety of thermal batteries.

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

리튬이온 배터리 방전 시 발열 특성 및 냉각 실험과 유한요소 해석 (Thermal Characteristics and Cooling Experiments and Analysis of Finite Elements in the Discharge of Lithium-Ion Batteries)

  • 김석일;강신유
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.15-23
    • /
    • 2023
  • Lithium-ion batteries are predominantly employed in electric vehicles and energy storage devices, offering the advantage of high energy density. However, they are susceptible to efficiency degradation when operated at high temperatures due to their sensitivity to the external environment. In this study, we conducted experiments using an indirect cooling method to prevent thermal runaway and explosions in lithium-ion batteries. The results were validated by comparing them with heat transfer simulations conducted through a commercial finite element analysis program. The experiments included single-cell exothermic tests and cooling experiments on a battery pack with 10 cells connected in series, utilizing 21700 lithium-ion batteries. To block external temperature influences, the experimental environment featured an extrusion method insulation in the environmental chamber. The cooling system, suitable for indirect cooling, was constructed with copper tubes and pins. The heat transfer analysis began by presenting a single-cell heating model using commercial software, which was then employed to analyze the heating and cooling of the battery pack.