• Title/Summary/Keyword: Thermal profile

Search Result 472, Processing Time 0.025 seconds

Essence of thermal convection for physical vapor transport of mercurous chloride in regions of high vapor pressures

  • Kim, Geug-Tae;Lee, Kyong-Hwan;Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.231-237
    • /
    • 2007
  • For an aspect ratio (transport length-to-width) of 5, Pr=3.34, Le=0.078, Pe=4.16, Cv=1.01, $P_B=50$ Torr, only thermally buoyancy-driven convection ($Gr=4.83{\times}10^5$) is considered in this study in spite of the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B which would cause thermally and/or solutally buoyancy-driven convection. The crystal growth rate and the maximum velocity vector magnitude are decreased exponentially for $3{\le}Ar{\le}5$, for (1) adiabatic walls and (2) the linear temperature profile, with a fixed source temperature. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. The rate for the linear temperature profiles walls is slightly greater than for the adiabatic walls far varied temperature differences and aspect ratios. With the imposed thermal profile, a fixed source region, both the rate and the maximum velocity vector magnitude increase linearly with increasing the temperature difference for $10{\le}{\Delta}T{\le}50K$.

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

Time dependent heat transfer of proliferation resistant plutonium

  • Lloyd, Cody;Hadimani, Ravi;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.510-517
    • /
    • 2019
  • Increasing proliferation resistance of plutonium by way of increased $^{238}Pu$ content is of interest to the nuclear nonproliferation and international safeguards community. Considering the high alpha decay heat of $^{238}Pu$, increasing the isotopic fraction leads to a noticeably higher amount of heat generation within the plutonium. High heat generation is especially unattractive in the scenario of weaponization. Upon weaponization of the plutonium, the plutonium may generate enough heat to elevate the temperature in the high explosives to above its self-explosion temperature, rendering the weapon useless. In addition, elevated temperatures will cause thermal expansion in the components of a nuclear explosive device that may produce thermal stresses high enough to produce failure in the materials, reducing the effectiveness of the weapon. Understanding the technical limit of $^{238}Pu$ required to reduce the possibility of weaponization is key to reducing the current limit on safeguarded plutonium (greater than 80 at. % $^{238}Pu$). The plutonium vector evaluated in this study was found by simulating public information on Lightbridge's fuel design for pressurized water reactors. This study explores the temperature profile and maximum stress within a simple (first generation design) hypothetical nuclear explosive device of four unique scenarios over time. Analyzing the transient development of both the temperature profile and maximum stress not only establishes a technical limit on the $^{238}Pu$ content, but also establishes a time limit for which each scenario would be useable.

Thermal Stress at the Junction of Skirt to Head in Hot Pressure Vessel (고온 수직형 압력용기 Skirt 부의 열응력에 관한 연구)

  • 한명수;한종만;조용관
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • It is well recognized that a excessive temperature gradient from the junction of head to skirt in axial direction in a hot pressure vessel can cause unpredicted high thermal stress at the junction and/or in axial direction of a skirt. this thermal stress resulting from axial thermal gradient may be a major cause of unsoundness of structural integrity. In case of cyclic operation of hot pressure vessels, the thermal stress becomes one of the primary design consideration because of the possibility of fracture as a result of cyclic thermal fatigue and progressively incremental plastic deformation. To perform thermal stress analysis of the junction and cylindrical skirt of a vessel, or, at least, to inspect quantitatively the magnitude and effect of thermal stress, the temperature profile of the vessel and skirt must be known. This paper demonstrated the temperature distribution and thermal stress analysis for the junction of skirt to head using F.E. analysis. Effect of air pocket in crotch space was quantitatively investigated to minimize the temperature gradient causing the thermal stress in axial direction. Effect of the skirt height on thermal stresses was also studied. Analysis results were compared with theoretical formulas to verify th applicability to the strength calculation in design field.

  • PDF

Thermal Conductivity Analysis of Amorphous Silicon Formed by Natural Cooling: A Molecular-dynamics Study

  • Lee, Byoung Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.295-300
    • /
    • 2016
  • To investigate the thermal conductivity and the structural properties of naturally cooled excimer-laser annealed Si, molecular-dynamics (MD) simulations have been performed. The thermal conductivity of crystalline Si (c-Si) was measured by direct method at 1000 K. Steady-state heat flow was measured using a stationary temperature profile; significant deviations from Fourier's law were not observed. Reliable processes for measuring the thermal conductivity of c-Si were presented. A natural cooling process to admit heat flow from molten Si (l-Si) to c-Si was performed using an MD cell with a size of $48.9{\times}48.9{\times}97.8{\AA}^3$. During the cooling process, the temperature of the bottom $10{\AA}$ of the MD cell was controlled at 300 K. The results suggest that the natural cooling system described the static structural property of amorphous Si (a-Si) well.

Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Permanent Magnet Attitude Stabilization Method (영구자석 안정화 자세제어 방식이 적용된 큐브위성의 열적 특성분석)

  • Kang, Soo-JIn;Jung, Hyun-Mo;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.26-32
    • /
    • 2013
  • Passive attitude stabilization method has been widely usde for attitude determination and control of cube satellite due to its advantage of system simplicity. The permanent magnet installed on the cube satellite passively controls the attitude of the satellite such that the satellite is aligned with the earth magnetic field. In this paper, on-orbit thermal behavior of the cube satellite with the permanent magnet attitude stabilization method has been investigated through on-orbit thermal analysis. THe orbit profile obtained from the aforementioned attitude control method has been reflected in the analysis. The analysis results indicate that the thermal design proposed in this study is effective for satisfying the temperature requirements of the commericial mission equipments.

The thermal analysis of te-based media for the optical recording (광기록에 이용되는 Te-based media에 대한 열적 해석)

  • 이성준;천석표;이현용;정홍배
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 1995
  • We discussed the thermal analysis for a recording media with the variation of the laser pulse duration, the laser power and the temperature distribution in order to optimize the Te-based antireflection structure from the computer calculations. In the case that the radial heat diffusion is negligible, we can calculate the maximum temperature of the recording layer at the center of the spot by the Simple Model. The temperature profile of the recording layer is obtained from the Numerical Model by considering the total specific heat and the latent heat. As a result, the effect of the heat sinking acting as a thermal loss for the hole formation could be minimized by introducing the pulse with the hole formation duration(.tau.) below the thermal time constant(.tau.$_{D}$) of a dielectric layer. These requirments can be satisfied by using the dielectric thickness of the 2nd ART(Anti-Reflection Trilayer) condition or the dielectric materials with a low thermal diffusivity.y.

  • PDF

Fabrication of Microlens Array Using Photoresist Thermal Reflow (Photoresist Thermal Reflow를 이용한 Microlens Array 제작)

  • Hwang, Sung-Ki;Baek, Sang-Hoon;Kwon, Jin-Hyuk;Park, Yi-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.118-122
    • /
    • 2009
  • An optical sheet with microlens array (MLA) is designed and fabricated as a substitute for the prism sheets of LCD backlight. Using photoresist thermal reflow, MLAs were fabricated on PET film with thickness of $100{\mu}m$, and we measured the change of MLA profile in terms of exposure time, reflow temperature and reflow time.

A Study on the Effect of Tool Thermal Deformation on Surface Roughness for Turning Process

  • Hong, Min-Sung;Lian, Zhe-Man;Kim, Dong-Joon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.262-267
    • /
    • 2000
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based on Pro/Engineering and temperature and deformation are simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system.

  • PDF

Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir (용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발)

  • Ahn, Ki Hong;Kim, Seon Joo;Seo, Dong Il
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.