• Title/Summary/Keyword: Thermal physiological responses

Search Result 97, Processing Time 0.023 seconds

Physiological Responses and Subjective Sensations by Age through Seasonal Condition (환경온도에 따른 착의 생리반응과 주관적 감각의 연령별 비교)

  • Lee, Jung-Sug;Song, Min-Kyu;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.833-839
    • /
    • 2009
  • This study was to investigate the human's physiological responses and subjective sensations with wear trial through seasonal condition by age. Climate chamber was set $5^{\circ}C$, RH 45% for winter and $30^{\circ}C$, RH 65% for summer condition. Thirty male subjects were volunteered consisted of 10 people in their 20s, 40s, and 60s. In this study physiological responses such as rectal temperature, skin temperature, clothing microclimate, heart rate and blood pressure were measured. As for age, 60s was the highest in rectal temperature regardless of seasonal condition. In skin temperature, 40s was the highest in winter and 20s was the highest in summer. In clothing microclimate temperature and heart rate, 20s was the highest regardless of seasonal condition. And blood pressure was appeared the highest in 20s regardless of seasonal condition. Subjective sensations such as temperature sensation, wetness sensation and thermal comfort were measured. The subjects revealed that temperature sensation was higher 20s than 60s. Compare of other age group, 60s felt colder in the same environment and clothing. It suggested that temperature susceptibility in 60s became weakened showing no change sensation during the cold exposure. Wetness sensation was higher 20s than 60s. Thermal comfort of 60s was felt more discomfortable than any other age group. This means require the supplement of a suitable clothing in order to adjust to change of environmental conditions.

Evaluation of Physiological Responses and Subjective Sensation in Different Sock Materials (양말 소재별 인체생리적 반응 및 주관적 감각평가)

  • 김칠순;정명희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1475-1483
    • /
    • 2001
  • The purpose of this study was to determine the physiological responses and subjective sensation according to fiber content of socks. Six female students participated in the wear trial test which was conducted in controled environmental chamber with 26${\pm}$1$^{\circ}C$ and 60${\times}$3%. R.H.SAS program was used for statistical analysis. The results of this study were as follows. Mean skin temperature was significantly different among three different socks. AWNP socks had the highest mean skin temperature and instep temperature. Also relative humidity in the microclimate of socks as well as heart rate were influenced by fiber content of socks, However, test of subjective sensation such as thermal, humid, comfort sensation showed that there was no significant difference among three different socks thermal sensation during the exercise and recovery period.

  • PDF

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Effect of Ondol on Physiological Responses during Sleeping (IV) (온돌환경이 수면시의 생리반응에 미치는 영향 (제4보))

  • Lee, Soon-Won;Kweon, Soo-Ae
    • Korean Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.183-195
    • /
    • 1998
  • The purpose of this study is to investigate the effect of Ondol on the bedclimate, microclimate and physiological responses of occupants. Four healthy female subjects slept for seven hours in thermal environment of detached house and apartment respectively. Their bedclimate, microclimate, skin temperature, weight loss of body, weight of bedcloth and sleepwear, body movement and subjective sensation were measureed for this study. The results were as follows; The differences of bedclimate, microclimate, skin temperature were significant according to season and residence styles. The occupants of the detached house showed higher temperature and humidity inside quilt and clothes than those of the apartment did on apartment environment. The occupants of the detached house showed higher weight losses of body, heavier weights of quilt than those of the apartment did on apartment environment in the spring, autumn and winter, lower weight losses of mattress in the autumn and winter. The occupants of the detached house moved more than those of the apartment on apartment environment when sleeping. The occupants of the detached house felt higher thermal sensation and lower humidity sensation than those of the apartment did. The occupants of the detached house felt more comfortable than those of the apartment on detached house environment, while the occupants of the apartment felt more comfortable than those of the detached house on apartment environment. The thermal environments of the apartment and the detached house had an effect on the bedclimates, microclimates of occupants and therefore the physiological responses such as skin temperature, rectal temperature, weight loss of body, perspiration and subjective sensation are different during sleeping according to their residential styles on the same environment.

  • PDF

Effects of Design and Material Change of Firefighter Station Uniform on Thermal Physiological and Subjective Responses (소방 기동복의 디자인과 소재 변화가 착용자의 온열생리 반응 및 주관적 감각에 미치는 영향)

  • Kim, Hee-Eun;Kim, Seong-Suk;Son, Su-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.4
    • /
    • pp.776-787
    • /
    • 2020
  • This study investigated physiological and subjective responses to different types of firefighter station uniforms made with various designs and materials. Six healthy males participated in this study that consisted of 20 min of rest, 30 min of treadmill exercise, and 30 min of recovery in a hot and humid environment (34℃ and 65%RH). The experimental clothing conditions were as follows. 1) a fitted T-shirt and trouser made of 100% polyester (FC-Uniform), and 2) flame retardant T-shirts made of acrylic and cotton as well as trousers with aramid and polyester, designed for overfitting (Control). There were no significant differences in the body temperature, and sweat rate between the two conditions; however, the heart rate with the FC-Uniform was significantly lower than Control (p=.025). The clothing microclimate temperature at the chest of the FC-Uniform was significantly lower than the Control (p=.037), and a difference of 1℃ was maintained until the recovery was complete. There were no significant differences in the subjective responses; however, participants experienced a humidity sensation faster with FC-Uniform in the recovery phase. The results indicate that changes in the design and material of firefighter station uniforms may have a positive influence on reducing the thermal stress of firefighters.

Evaluation of the thermal environments and the workload of farmers during the spraying pesticide in the rice field (농약 방제 작업자의 작업 환경 및 노동 부담 평가)

  • 최정화;이주영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1672-1681
    • /
    • 2002
  • To evaluate the thermal environments and the workload of farmers in the rice field in summer, this study investigated rice farmers' physiological, psychological responses, work postures, work clothes, air temperature and air humidity during the spraying pesticide in the rice field. Five career farmers (3 males, 2 females) volunteered as the subjects. During the spraying pesticide in the rice field, physiological responses were monitored continuously. The results were as follows. l. Farmers wore only raincoats not pesticide-proof clothing. 2. The value of WBGT, rectal temperature($T_{re}$), mean skin temperature(${\={T}}_{sk}$) were $24.9∼28.9^{\circ}C,\;37.8({\pm}0.3)^{\circ}C\;and\;33.6({\pm}0.6)^{\circ}C$, respectively. Clothing microclimate temperature($T_{cl}$) on the chest and back were $32.5({\pm}2.6)^{\circ}C\;and\;33.6({\pm}2.6)^{\circ}C$, respectively(p<0.00l). Humidity inside of the clothing ($H_{cl}$) was over 80%RH and heart rate(HR) was 112(${\pm}27$)bpm. We evaluated that the spraying pesticide was 'heavy work' by the Tre and HR. To four subjective questionnaires, all farmers expressed 'hard, hot, humid and uncomfortable' without individual difference at the end of works. We suggested that 1) the spraying pesticide in the rice field was a heavy work, 2) because the workload of farmers in the raincoat/pesticide-proof clothing can't be evaluated by only WBGT, assessors should measure physiological, psychological responses as well as thermal environments, 3) to alleviate farmers' heat strain, clothing manufacturers must consider not only the improvement of textile materials and clothing weight but also the designing of personal cooling equipment.

Evaluation of Thermal Physiological Responses and Comfort in Dox Fabric (한지닥 섬유제품의 인체 생리 반응 및 쾌적성 평가)

  • Im, Soon
    • Journal of the Korean Society of Costume
    • /
    • v.63 no.5
    • /
    • pp.102-114
    • /
    • 2013
  • This study performed the evaluation of skin temperature, heart rate, humidity and temperature inside clothing, and subjective sensation to estimate the physiological responses of the human body and its feeling of comfort for developing value-added dox fabric. Experiments were performed on five healthy adult women whose average age was 21, at climate chamber in which temperature, relative humidity and air current were set up below $28{\pm}5^{\circ}C$, $50{\pm}10%$, 0.2m/s, respectively. Two kinds of clothes were used for the experiments: 100% cotton and dox clothes. The clothes were identical in size and form, and the attire consisted of long-sleeved shirts, long trousers, and socks. The experiment was performed for 30 minutes using ergometer. The results are as follows. 1) It showed low skin temperature of forearm, breast, back, forehead and lower leg in exercise, but high skin temperature of them in recovery. However skin temperature of thigh and foot increased from rest to recovery. 2) It showed significant difference (p<0.001, p<0.01) in average skin temperature between cotton and dox clothes. Cotton clothes had a higher average skin temperature compared to dox. Not only was there a significant difference in temperature inside clothing (p<0.001), this was also the case with humidity inside the clothing (p<0.001).

Evaluation of Farmer's Workload and Thermal Environment During Harvesting Grape in Summer (여름철 포도 수확 작업 농민의 작업 환경 및 노동 부담 평가)

  • 최정화;김명주;이주영
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.11
    • /
    • pp.193-205
    • /
    • 2002
  • To evaluate farmers' workload during harvesting grapes in summer, this study investigated farmers' physiological, psychological responses, work postures and thermal environment around in the field. This field study was conducted in the Anseong County of Kyonggi Province at the end of August. Five career farmers (1 male, 4 females) volunteered as subjects. Three of them were over their sixties. During harvesting grapes in the field, physiological responses were monitored continuously. 1. Air temperature (T/sub a/), air humidity(H/sub a/), black globe temperature(T/sub g/), air velocity and WBGT around the grape field were 26.9℃, 77.7%RH, 32.8℃, 0.08㎧ and 26.3℃, respectively. Because farmers started the harvesting task in early morning, thermal environments weren't conditions to give farmers severe heat strain. 2. The percentage of the work postures was larger in order of standing, walking, and bending one's back posture. Particularly, the percentage of standing posture with raising both arms above shoulder of two farmers was up to 29% and 61% of the total work duration. 3. Rectal temperature (T/sub re/), mean skin temperature (T/sub sk/), clothing microclimate temperature (T/sub cl/) on the chest and the back, heart rate (HR) and energy expenditure (EE) were 37.2℃, 33.1℃, 32.0℃, 32.4℃, 88bpm and 1.3 Kca1/㎡/min respectively. In the point of these physiological results, we evaluated that the harvesting task was a moderate work. 4. All farmers expressed‘hard, hot, humid and slightly uncomfortable’ at the end of works for each subjective questionnaire. The grape harvesting tasks were not evaluated as a very hard work in the point of physiological work standards. But we considered 1) inappropriate work posture (standing posture with raising both arms above shoulder) and 2) farmers' age as burden factors. These findings suggest that adding adequate protective clothing/equipments for farmers may contribute to maintain their body temperature within the normal range, stabilize HR and decrease psychological strain.

A Study of Physiology Signal Change by Air Conditioner Temperature Change (에어컨 온도변동에 따른 생리신호 변화에 관한 연구)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Kim, Hyung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.502-509
    • /
    • 2007
  • This study evaluates thermal comfort by air conditioner temperature raising at the point of time that human body begins to adapt. Thermal comfort according to change of time enters by uncomfortable area gradually at general cold room temperature that magnetic pole is in human body. However, can know that keep continuous thermal comfort in case raise temperature in human body adaptation visual point. Experiments were performed in environmental chamber. Subjects were selected 4 men and 4 women whose life cycle were proved that are similar. The subjects stay in the pretesting room during the 30 minutes and enter the testing room under each experiment conditions. During the experiment, brain wave, electrocardiogram, blood pressure and thermal comfort and sensation responses were measured. In this study, physiological and psychological responses correspond under temperature raising at human body adaptation.

Effect of Feet Cooling and Feet Warming on the Behavioral Temperature Regulation (족부의 냉각과 가온이 행동성 체온조절에 미치는 영향)

  • Jeong, Woon-Seon
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.4
    • /
    • pp.681-686
    • /
    • 2007
  • This study was conducted to investigate the effects of the thermally different states of human feet on temperature regulation in winter season. Five healthy female students of age 20 volunteered as subjects to participate in the study. Physiological responses such as rectal temperature and skin temperatures as well as subjective responses of thermal comfort and thermal sensation were observed. Preferred clothing and preferred temperature were also evaluated in terms of behavioral temperature regulation. The results obtained through the experiment were statistically analyzed using paired t test. Rectal temperature was decreased greater (p<.01) and mean skin temperature was maintained higher (p<.01) in feet wanning than in feet cooling. Results of preferred clothing were coincident with those of general thermal sensation. There was a higher tendency to prefer temperature in feet wanning than feet cooling in the morning. It was concluded that keeping feet skin temperature lower in the early morning and higher in the late evening would be effective in terms of regulating circadian rhythm of core temperature.

  • PDF