• Title/Summary/Keyword: Thermal performance prediction

Search Result 203, Processing Time 0.025 seconds

Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria (칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가)

  • Lee, Gong-Hee;Bang, Young-Seok;Woo, Sweng-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.363-369
    • /
    • 2012
  • The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling (급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경)

  • 김요셉;김영일;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION (열성층 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

Performance Prediction of a Hot Water Supply and Panel Heating System with Solar Energy (태양열 온수 및 난방 일체형 복합시스템의 성능예측)

  • Han, Yuri;Park, Youn Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, a simulation program was developed with heat transfer model in the thermal storage tank for a solar collector and burner combined heating and hot water supply system. Analysis was conducted with variation of operating condition and schedule to analyze performance of a hot water supply and panel heating system with a solar collector and burner combined thermal storage tank. The simulation program is divided two sections. One part is calculation of temperature variation of water which flows through the panel in the floor for heating of the residential house during 24 hours, and the other part is heat transfer calculation for the reaction time to get desired water temperature in the thermal storage tank. As results, light oil consumption and system performance during operation period were analyzed with variation of climate condition and with or without solar collector. Most of the case, oil could be saved about from 24 to 41% with installing the solar collector. The performance of the system is more dependent on radiation time of the solar collector rather than the intensity of the solar radiation which was adopted for the climate analysis.

Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve (프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석)

  • Park, Jeong Woo;Khan, Haroon Ahmad;Jeong, Eun-A;Kwon, Sung-Ja;Yun, So-Nam;Lee, Hue-Sung
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

A Thermal Conductivity Model for LWR MOX Fuel and Its Verification Using In-pile Data

  • Byung-Ho Lee;Yang-Hyun Koo;Jin-Silk Cheon;Je-Yong Oh;Hyung-Koo Joo;Dong-Seong Sohn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.482-493
    • /
    • 2002
  • The MOX fuel for LWR is fabricated either by direct mechanical blending of UO$_2$ and PuO$_2$ or by two stage mixing. Hence Pu-rich particles, whose Pu concentrations are higher than pellet average one and whose size distribution depends on a specific fabrication method, are inevitably dispersed in MOX pellet. Due to the inhomogeneous microstructure of MOX fuel, the thermal conductivity of LWR MOX fuel scatters from 80 to 100 % of UO$_2$ fuel. This paper describes a mechanistic thermal conductivity model for MOX fuel by considering this inhomogeneous microstructure and presents an explanation for the wide scattering of measured MOX fuel's thermal conductivity. The developed model has been incorporated into a KAERI's fuel performance code, COSMOS, and then evaluated using the measured in-pile data for MOX fuel. The database used for verification consists of homogeneous MOX fuel at beginning-of-life and inhomogeneous MOX fuel at high turnup. The COSMOS code predicts the thermal behavior of MOX fuel well except for the irradiation test accompanying substantial fission gas release. The over-prediction with substantial fission gas release seems to suggest the need for the introduction of a recovery factor to a term that considers the burnup effect on thermal conductivity.

Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models (선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.

A study on the performance prediction of 4 cycle 4 cylinder S.I. engine considering the unsteady flow in the intake and exhaust pipes (흡배기 관내의 비정상 유동을 고려한 4사이클, 4기통 전기.점화 기관의 성능 예측에 관한 연구)

  • 박성서;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.72-81
    • /
    • 1991
  • In this study, the analytic investigation of the unsteady flow in the intake and exhaust pipes has been carried out using the method of characteristics in one direction to predict volumetric efficiency. Based on the calculated volumetric efficiency, three zone predictive analysis using Wiebe function was applied to predict the engine performance and the results were compared with experiment. Mixture in the cylinder is subdivided into three zones during combustion process in this analysis; adiabatic core zone, thermal boundary layer zone and unburned zone. In each zone, pressure, temperature and gas composition have been calculated. In conclusion, it is possible to take account of the intake and exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparison of prediction with experimental results shows a good agreement on the pressure variation in the intake and exhaust pipes which has a direct influence on the volumetric efficiency and performance of the engine.

  • PDF

Prediction of Stratification Model for Diffusers in Underfloor Air Distribution System using the CFD (CFD를 활용한 바닥공조시스템 디퓨저의 성층화 모델 예측)

  • Son, Jeong-Eun;Yu, Byeong-Ho;Pang, Seung-Ki;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised access floor to provide conditioned air through floor diffusers that create a vertical thermal stratification during cooling operations. Thermal stratification has significant effects on energy, indoor air quality, and thermal comfort performance. The purpose of this study was to characterize the influence of a linear bar grille diffuser on thermal stratification in both interior and perimeter zones by developing Gamma-Phi based prediction models. Forty-eight simulations were carried out using a Computational Fluid Dynamics (CFD) technique. The number of diffusers, the air flow supply, internal heat gains, and solar radiations varied among the different cases. Models to predict temperature stratification for the tested linear bar grille diffuser have been developed, which can be directly implemented into dynamic whole-building simulation software such as EnergyPlus.