• 제목/요약/키워드: Thermal performance factors

검색결과 315건 처리시간 0.023초

실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구 (An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector)

  • 김상명;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구 (Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test)

  • 김진희;김상명;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Modeling Environmental Effects on Detection Performances for Variable Depth Sonars in the East Sea of Korea

  • Na, Young-Nam;Cho, Chang-Bong;Han, Sang-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권2E호
    • /
    • pp.68-73
    • /
    • 2004
  • In the East Sea of Korea, the ocean environments are known to have strong variations in space and time. Their effects are very important factors in sound propagation and sonar performance. We consider the environmental factors such as eddies and thermal fronts affecting underwater sound propagation and target detection performance by sonars. Unfortunately, however, the detailed structure of eddies is usually difficult to understand by using the sea surface temperatures from infrared images alone or a few profiles from the CTD (conductivity, temperature and depth) castings. The temperature fields of eddy and thermal front are simulated with typical patterns of those obtained from several observations. This paper delivers the overviews of environments and acoustic models with their simulation results on sonar performance.

금속단열재 박판의 설계인자별 단열성능 영향 연구 (Studies on Insulation Effect Related with Thin-Plate Design Factors for Reflective Metal Insulation(RMI) of Nuclear Power Plant)

  • 어민훈;이성명;장계환
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.350-354
    • /
    • 2016
  • Although fibrous insulations are generally used with resistive insulation type, metallic insulation is proper matter to satisfy low head-loss and equipment life when considering the specific condition, especially for Nuclear power plant. Common insulation is resistance insulation with a low thermal conductivity. but RMI is made of sheet plate with low emissivity and closed air space. Thermal radiation is blocked by stainless steel with low emissivity. Thermal conductivity and thermal convection are blocked by closed air space. This study shows the changes and effects of the heat loss according to shape and method of stacking sheet plates inserted into the insulation and analyzed the most optimized way for thermal insulation performance. The result shows that using sheet plate structure through raised and protruding shape processing was the appropriate model to optimize thermal performance. Additionally, insulating performance of RMI improved by placing the sheet plate in a high temperature region intensively.

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).

사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석 (The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module)

  • 정선옥;천진아;김진희;김준태;조인수;남승백
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

태양열 냉.난방시스템의 열성능 분석 (Analysis of Thermal Performance of a Solar Heating & Cooling System)

  • 곽희열;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

전자부품의 방열방향에 따른 접촉열전도 특성 (Characterization of a Thermal Interface Material with Heat Spreader)

  • 김정균;;이선규
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.

주변 지반의 열전도도를 고려한 PHC 에너지파일의 열 거동 및 파일 간 열 간섭 현상에 대한 수치해석 연구 (Thermal Behavior of Energy Pile Considering Ground Thermal Conductivity and Thermal Interference Between Piles)

  • 고규현;윤석;박도원;이승래
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2381-2391
    • /
    • 2013
  • 일반적으로 에너지파일의 열적 성능에 영향을 주는 중요한 인자로 지반의 열 물성, 열 교환기 형태, 운용방법, 파일 간 열 간섭 등이 고려될 수 있다. 본 연구에서는 지반의 실제 조건을 반영한 수치모델을 통해 이들 인자들이 미치는 영향을 살펴보았다. 지반의 포화 정도에 따라서 파일의 열 교환율은 최대 3배까지 차이를 보였으며, 열 저항은 최대 8.7%의 차이가 발생하였다. 또한 열 교환기 유형이 파일의 열 성능에 영향을 주며, 3U-Type이 W나 U-Type에 비해 상대적으로 높은 열 효율을 보였다. 운용방법에 있어서, 부분가동 시(8시간 가동, 16시간 휴지) 연속가동에 비해서 약 20%의 열효율을 보전할 수 있으며, 장기적인 열 축적현상을 방지하는데 유리하다. 지반의 조건에 따라 군 말뚝에 의한 열 간섭 정도가 달라지는데, 지반이 포화상태에서 건조 상태로 갈수록 군 말뚝에 의한 열 간섭효과는 감소한다. 일반적인 지반조건에서 열 교환 감소율 1%미만을 유지하는 적정 이격 거리는 U-Type에서 최대 3.2D, W-Type에서 최대 3.6D, 3U-Type에서 최대 3.7D로 산정되었다.

PMV, TS 기준 건물 열 환경 제어법의 성능 및 적용성 분석 (Performance and Applicability of PMV-based and TS-based Building Thermal Controls)

  • 문진우
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.430-440
    • /
    • 2011
  • The purpose of this study was to investigate the interactions between the thermal factors in existing thermal control methods and to find out the control logic that can create more comfortable thermal conditions. For it, four thermal control logics were developed:conventional temperature-based control; temperature-based and humidity-based control; PMV-based control; and TS-based control. Their performance was comparatively tested in the U.S. typical 5-story office building in two climate zones (Detroit, Michigan and Miami, Florida) for two seasons (winter and summer) incorporating IBPT (International Building Physics Toolbox) and Matlab/Simulink. Analysis on the thermal conditions and energy efficiency revealed that each control logic created comfortable conditions for their respective target, i.e., temperature, humidity, PMV or TS, but uncomfortable for others (e.g., temperature-based control logic maintained PMV or TS uncomfortably or vise versa). In addition, energy efficiency was significantly different by logics. In conclusion, it can be said that the overall thermal comfort can be improved by the adoption of the PMV and TS as a target variable and their economical benefits are expected in the hotter climate zones with the reduced cooling and dehumidifying energy consumptions.