• Title/Summary/Keyword: Thermal performance analysis

Search Result 1,946, Processing Time 0.038 seconds

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.

Thermal Performance of Building Envelope with Transparent Insulation Wall (건물 외피 투과형단열 벽체의 열성능 해석 연구)

  • Jang, Yong-Sung;Yoon, Yong-Jin;Park, Hyo-Soon
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • Global efforts have made to reduce energy consumption and $CO_2$ gas emission. One of the weakest parts for energy loss through the whole building components is building envelopes. Lots of technologies to increase the thermal performance of building envelopes have been introduced in recent year. Transparent Insulation Wall(TIW) is a new technology for building insulation and has been function both solar transmittance and thermal insulation. A mathematical model of a Transparent Insulation Wall equipped with south wall was proposed in order to predict thermal performance under varying climates(summer and winter). Unsteady state heat transfer equations were set up using an energy balance equation and solved using Gauss-Seidel iteration solution procedure. The thermal performance of the TIW determined from a wall surface and air layer temperature, non-airconditioned room temperature and air conditioning load. As a result, this numerical study shows that the TIW is effective in an air conditioning load reduction. Further experimental study is required to establish complete TIW system.

The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window (덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석)

  • Bae, Min-Jung;Kang, Jae-Sik;Choi, Gyeong-Seok;Choi, Hyung-Joung
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

Magnetic and Thermal Analysis of a Water-cooled Permanent Magnet Linear Synchronous Motor

  • Zhang, Xinmin;Lu, Qinfen;Cheng, Chuanying;Ye, Yunyue
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.498-504
    • /
    • 2012
  • The water-cooled Permanent Magnet Linear Synchronous Motor (PMLSM) has a wide range of applications due to high efficiency, high thrust force density and high acceleration. In order to ensure normal operation and maximum output, both the magnetic and thermal performance are vital to be considered. Based on ANSYS software, electromagnetic and thermal finite-element analysis (FEA) models of a 14-pole, 12-slot water-cooled PMLSM are erected adopting suitable assumptions. Firstly, the thrust force and force ripple with different current densities are calculated. Secondly, the influence of different water flow on the motor heat dissipation and force performance under different operationional conditions are investigated and optimized. Furthermore, for continuous operation, the temperature rise and thrust feature are studied under the rated load 8A, the proper temperature $120^{\circ}C$ and the limited temperature $155^{\circ}C$. Likewise, for short-time operation, the maximum duration is calculated when applied with a certain large current. Similarly, for intermittent operation, load time as well as standstill time are determined with the optimal current to achieve better thrust performance.

Thermal Performance Analysis for Cu Block and Dense Via-cluster Design of Organic Substrate in Package-On-Package

  • Lim, HoJeong;Jung, GyuIk;Kim, JiHyun;Fuentes, Ruben
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.91-95
    • /
    • 2017
  • Package-On-Package (PoP) technology is developing toward smaller form factors with high-speed data transfer capabilities to cope with high DDR4x memory capacity. The common application processor (AP) used for PoP devices in smartphones has the bottom package as logic and the top package as memory, which requires both thermally and electrically enhanced functions. Therefore, it is imperative that PoP designs consider both thermal and power distribution network (PDN) issues. Stacked packages have poorer thermal dissipation than single packages. Since the bottom package usually has higher power consumption than the top package, the bottom package impacts the thermal budget of the top package (memory). This paper investigates the thermal and electrical characteristics of PoP designs, particularly the bottom package. Findings include that via and dense via-cluster volume have an important role to lower thermal resistance to the motherboard, which can be an effective way to manage chip hot spots and reduce the thermal impact on the memory package. A Cu block and dense via-cluster layout with an optimal location are proposed to drain the heat from the chip hot spots to motherboard which will enhance thermal and electrical performance at the design stage. The analytical thermal results can be used for design guidelines in 3D packaging.

Thermal Performance of a Heat Sink According to Insulated Gate Bipolar Transistor Array and Installation Location (IGBT 배열과 설치 위치에 따른 히트 싱크 방열 성능)

  • Park, Seung-Jae;Yoon, Youngchan;Lee, Tae-Hee;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Thermal performance of a heat sink for an inverter power stack was analyzed in terms of array and installation location of an Insulated Gate Bipolar Transistor (IGBT). Thermal flow around the heat sink was calculated with a numerical model that could simulate forced convection. Thermal performance was calculated depending on the array and location of high- and low-power IGBTs considering the maximum temperature of IGBT. The optimum array and installation location were found and causes were analyzed based on results of numerical analysis. For the numerical analysis, experiment design considered the installation location of IGBT, ratio of heat generation rates of high- and low-power IGBTs, and velocity of the inlet air as design variables. Based on numerical results, a correlation that could calculate thermal performance of the heat sink was suggested and the maximum temperature of the IGBT could be predicted depending on the installation method.

Thermal Performance of a Printed Circuit Heat Exchanger considering Longitudinal Conduction and Channel Deformation (축방향 열전도와 유로 변형을 고려한 인쇄기판형 열교환기 열적 성능)

  • Park, Byung Ha;Sah, Injin;Kim, Eung-seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2018
  • Printed circuit heat exchangers (PCHEs) are widely used with an increasing demand for industrial applications. PCHEs are capable of operating at high temperatures and pressure. We consider a PCHE as a candidate intermediate heat exchanger type for a high temperature gas-cooled reactor (HTGR). For conventional application using stainless steels, design and manufacturing of PCHEs are well established. For applications to HTGR, knowledge of longitudinal conduction and deformation of channel is required to estimate design margin. This paper analyzes the effects of longitudinal conduction and deformation of channel on thermal performance using a code internally developed for design and analysis of PCHEs. The code has a capability of two dimensional simulations. Longitudinal conduction is estimated using the code. In HTGR operating condition, about ten percent of design margin is required to compensate thermal performance. The cross-sectional images of PCHE channels are obtained using an optical microscope. The images are processed with computer image process technique. We quantify the deformation of channel with dimensional parameters. It is found that the deformation has negative effect on structural integrity. The deformation enhances thermal performance when the shape of channel is straight in laminar flow regime. It reduces thermal performance in cases of a zigzag channel and turbulent flow regime.

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace (항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가)

  • Seo, Sang-Kyu;Kim, Yun-Chul;Bae, Ji-Yeul;Hahm, Hee-Chul;Hwang, Tae-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.355-363
    • /
    • 2021
  • Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.