• 제목/요약/키워드: Thermal optical system

검색결과 405건 처리시간 0.024초

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.

흘로그램 간섭계를 이용한 광픽업 베이스의 미소 열변형 측정 (Measurement of Micro Thermal Deformation of Optical Pick-up Base Using Holographic Interferometry)

  • 서영민;강신일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2002
  • In optical pick-up, optical components such as objective lens, collimator, mirror, laser diode and photo diode are mounted on the pick-up base. These components must keep their original position during operation for proper transmittance of information from laser diode to optical disk and back to photo diode. However, micro thermal deformation of pick-up base which is induced by thermal environment during operation can deteriorate the performance of optical pick-up. Therefore, it is important to measure and analyze the thermal deformation behavior of pick-up base under thermal environment. In the present study, a measurement system using holographic interferometry was designed to measure micro thermal deformation of pick up base. The measurement system was verified by using the deformation of cantilever with prescribed motion actuated by PZT with 1 nm resolution. Interferometric measurement was compared quantitatively with that induced by PZT actuator. Finally, micro thermal deformation of pick-up base under actual thermal environment was measured using the present holographic interferometry and the results were analysed.

  • PDF

CAE 기법을 이용한 정보저장시스템의 Fanless 열설계 (Fanless Thermal Design for the Information Storage System Using CAE Technique)

  • 류호철;단병주;최인호;김진용
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.246-247
    • /
    • 2005
  • This study suggested fanless thermal design using CAE technique for the information storage system under the serious thermal problem. At first, main heat flow was controlled by CAE based fanless heat sink design not to influence sensitive optical pick-up sensor. Then, vent parametric studies found a thermal solution about highly concentrated case top heat due to fanless. These CAE results were verified by experimental methods. As a consequence of newly designed thermal path, thermal specification of optical pick-up sensor was satisfied and fanless thermal design for the information storage system was achieved.

  • PDF

Simple Graphical Selection of Optical Materials for an Athermal and Achromatic Design Using Equivalent Abbe Number and Thermal Glass Constant

  • Kim, Young-Ju;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.182-187
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glasses to simultaneously achromatize and athermalize an imaging lens made of materials in contact. An athermal glass map that plots thermal glass constant versus inverse Abbe number is derived through analysis of optical glasses and plastic materials in visible light. By introducing the equivalent Abbe number and equivalent thermal glass constant, although it is a multi-lens system, we have a simple way to visually identify possible optical materials. Applying this method to design a phone camera lens equipped with quarter inch image sensor having 8-mega pixels, the thermal defocuses over $-20^{\circ}C$ to $+60^{\circ}C$ are reduced to be much less than the depth of focus of the system.

스윙 암 타입 초소형 광 픽업 시스템의 방열 설계 (Micro Thermal Design of Swing-Arm Type Small Form Factor Optical Pick-up System)

  • 이지나;김홍민;강신일;손진승;이명복
    • 정보저장시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.21-25
    • /
    • 2006
  • The new multimedia information environment requires smaller optical data storage systems. However, one of the difficulties encountered in designing small form factor(SFF) optical pick-up is to emit the heat which is generated from laser diode(LD). Heat generated at the LD can reduce the optical performance of the system and the lifetime of LD. Therefore, it is important to include the thermal design in the design stage of SFF optical pick-up system for high performance and the longer lifetime of LD, and furthermore, to analyze the thermal characteristics of LD in detail micro heat transfer analysis is necessary. In the present study, micro heat transfer analysis was performed using the finite element method for the $28{\times}11{\times}2mm^3$ super slim swing-arm type optical pick-up actuator for Blu-ray disk. Two different materials were used for a swing-arm; a double layer polycarbonate/steel structure and a single aluminum structure.

  • PDF

Using MZIs for Optical PSBT Transmissions: Requirements for Thermal Stabilization

  • Ducournau, Guillaume;Latry, Olivier;Ketata, Mohamed
    • ETRI Journal
    • /
    • 제28권5호
    • /
    • pp.615-620
    • /
    • 2006
  • In this paper, we discuss the quantification of Mach-Zehnder interferometer (MZI) thermal stabilization which is needed in optical phase shaped binary transmission (PSBT) links. Considering the thermo-optic and thermal expansion effects, we revisit the analytical expression for the thermal drift (GHz/$^{\circ}C$) of the MZI center frequency (denoted here by the 'MZI spectral drift'). An MZI is then used in an experimental transmission system using the optical PSBT format. We study the effect of spectral MZI drift by using a thermally stabilized interferometer and applying a frequency shift to the optical carrier. By using the thermal drift coefficient of the MZI, we find that to ensure low bit error rate fluctuations due to the MZI drift, the thermal stabilization of the device must have an accuracy of $0.5^{\circ}C$.

  • PDF

20:1 줌 열영상 장비 비열화 분석 및 시험 (Analysis and test of athermalizaion for 20:1 zoom thermal imaging system)

  • 김현숙;최세철;최세철;이국환;박용찬;김현규
    • 한국광학회지
    • /
    • 제12권4호
    • /
    • pp.281-288
    • /
    • 2001
  • 본 연구에서는 넓은 운용온도에서 열영상 장비의 광학성능을 유지하도록 하기 위한 비열화 분석 및 시험을 수행하였다. 비열화 분석은 광학계 설계를 위한 컴퓨터 프로그램인 Code-V와 SIGMA2100으로 수행하였으며 비열화 시험은 열영상 장비와 콜리메이터를 온도챔버에 함께 넣어 온도에 따른 영상을 녹화하였다. 2차원배열 검출기를 사용한 20:1 줌 열영상 장비를 가지고 비열화 시뮬레이션을 수행하였으며 그 결과를 이용하여 줌궤적을 보상하였다. 비열화 시험을 통하여 온도변화에 따라 줌궤적어 적절히 작동되어 $-32^{\circ}C-+50^{\circ}C$의 온도범위 내에서 만족할 만한 광학성능이 유지되는 것을 확인하였다.

  • PDF

광 픽업의 열변형이 광학적 성능에 미치는 영향 (Effect of Thermal Deformation of Optical Pick-up Base on the Optical Performance)

  • 김홍민;조성훈;이자용;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.105-108
    • /
    • 2004
  • The effect of thermal deformation of optical pick-up due to laser diode(LD) and LD driving integrated circuit on the optical performance of digital versatile disk(DVD) optical system was analyzed using the finite element analysis with initial surface residual stress conditions, and results were compared with the measured results with holographic interferometry. Ray tracing was performed using the deformed configuration of optical system.

  • PDF

Wide-angle optical design using high-resolution uncooled thermal detector

  • Lee, Jonghoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권11호
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we propose efficient design and construction of an infrared wide angle optical system with low distortion utilizing a high resolution detector for automobile application. The operational convenience and the recognition ability have been improved significantly by applying the high resolution uncooled thermal detector with wide angle optical design. The active ahtermalization mechanism is implemented so that the adjustment of the optical component of the system is to be made automatically according to the temperature change by motorized control. The modulation transfer function (MTF) is about 50% at the Nyquist frequency close the diffraction limit. The distortion is less than 5% at the edge field. As a result, a high-resolution uncooled thermal optical system with wide field of view (FOV) is assembled, aligned and its performance is tested successfully.

적외선 카메라-레이저 공통광학계의 레이저빔 열 영향성 분석 (Analysis of Laser-beam Thermal Effects In an Infrared Camera and Laser Common-path Optical System)

  • 김성재
    • 한국광학회지
    • /
    • 제28권4호
    • /
    • pp.153-157
    • /
    • 2017
  • 지향성적외선방해장비의 정렬 정밀도를 높히고 중량을 감소시키기 위해 적용된 적외선 카메라-레이저 공통광학계 구조에서 영상 성능 저하를 야기시키는 레이저빔 열 영향성을 분석하였다. 높은 에너지 밀도를 가지는 레이저빔이 광부품에 흡수되면 열이 발생하고 온도가 상승한다. 공통광학계 광부품 표면에서 발생한 열은 시스템 투과율을 감소시켜 적외선 카메라의 영상 품질을 저하시킬 수 있다. 지향성적외선방해장비의 운용개념을 고려하여 파장 $4{\mu}m$, 출력 3 W의 레이저빔이 10초간 미러(알루미늄, 실리카 글래스, 실리콘) 및 렌즈(사파이어, 셀레늄화아연, 실리콘, 게르마늄) 재료에 조사되는 상황을 가정하여 온도 분포를 계산하였다. 계산 결과, 미러 재료로는 실리카 글래스, 렌즈 재료로는 사파이어의 온도 상승이 상대적으로 컸고, 재료 온도 분포에 가장 큰 영향을 미치는 요소는 재료의 레이저빔 흡수율과 열전도도임을 확인하였다. 결론적으로 적외선 카메라-레이저 공통광학계에 사용하는 광부품은 흡수율이 낮고 열전도도가 높은 특성을 갖도록 선정되어야 광부품 온도 상승에 의한 적외선 카메라의 영상 품질 저하를 방지할 수 있다.