• Title/Summary/Keyword: Thermal network

Search Result 527, Processing Time 0.024 seconds

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

The Characterization of V Based Self-Forming Barriers on Low-k Samples with or Without UV Curing Treatment

  • Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.214.2-214.2
    • /
    • 2013
  • Device performance for the 45 and 32 nm node CMOS technology requires the integration of ultralow-k materials. To lower the dielectric constant for PECVD and spin-on materials, partial replacement of the solid network with air (k=1.01) appears to be more intuitive and direct option. This can be achieved introducting of second "labile" phase during depositoin that is removed during a subsequent UV curing and annealing step. Besides, with shrinking line dimensions the resistivity of barrier films cannot meet the International Technology Roadmap for Semiconductors (ITRS) requirements. To solve this issue self-forming diffusion barriers have drawn attention for great potential technique in meeting all ITRS requirments. In this present work, we report a Cu-V alloy as a materials for the self-forming barrier process. And we investigated diffusion barrier properties of self-formed layer on low-k dielectrics with or without UV curing treatment. Cu alloy films were directly deposited onto low-k dielectrics by co-sputtering, followed by annealing at various temperatures. X-ray diffraction revealed Cu (111), Cu (200) and Cu (220) peaks for both of Cu alloys. The self-formed layers were investigated by transmission electron microscopy. In order to compare barrier properties between V-based interlayer on low-k dielectric with UV curing and interlayer on low-k dielectric without UV curing, thermal stability was measured with various heat treatment temperature. X-ray photoelectron spectroscopy analysis showed that chemical compositions of self-formed layer. The compositions of the V based self-formed barriers after annealing were strongly dominated by the O concentration in the dielectric layers.

  • PDF

A Study on the Characteristic Analysis of Implemented Baseband AIN MIM Capacitor for Wireless PANs & Mobile Communication (무선PAN 및 이동통신용 기저대역 AIN MIM Capacitor의 구현과 특성분석에 관한 연구)

  • Lee, Jong-Joo;Kim, Eung-Kwon;Cha, Jae-Sang;Kim, Jin-Young;Kim, Young-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.97-105
    • /
    • 2008
  • The micro capacitors are passive elements necessary to electronic circuits and wireless portable PAN(personal area network) and Mobile Communications device modules in the baseband circuits in combination with another passive and active devices. As capacitance is proportionally increased with dielectric constant and electrode areas, in addition, inversely decreased the thickness of the dielectric material, thus thin film capacitors are generally seen as a preferable means to achieve high performance and thin film capacitors are used in a variety of functional circuit devices. In this paper, propose dielectric material as AIN(Aluminium nitride) to make micro thin film capacitor, and this capacitor has the MIM(metal-insulator-metal) structure. AIN thin films are widespread applied because they had more excellent properties such as chemical stability, high thermal conductivity, electrical isolation and so on. In addition, AIN films show low frequency response for baseband signal ranges, I-V and C-V electrical characterization of a thin film micro capacitor. The above experimental test and estimated results demonstrate that the thin film capacitor has sufficient and efficient functional performance to be the baseband range frequency of general electronics circuit and passive device applications.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.

The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation (전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구)

  • Shin, Bum Sik;Ko, Keum Jin;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.

Theoretical Analysis on the Applications of the Double-Floor Ondol System (이중 바닥 온돌 시스템의 응용에 관한 이론적 분석)

  • Choi, Won-Ki;Lee, Kang-Young;Lee, Hyun-Geun;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The Korean traditional 'Ondol' system has been a target for innovation to meet the requirements of sustainable domestic building and low carbon emission energy utilization. Simulation techniques provide designers and researchers with powerful tools to predict heating load and thermal behaviour of Ondol systems installed in various contexts. However, there are few studies on Ondol models, especially associated with multi-stories buildings of which type covers about 50% of Korean housing stock. In this study, we analyzed the double floor Ondol system on the multi-stories buildings using the ESP-r program. On the basis of the double floor Ondol system, we suggested the new modelling method that is composed of the Vent zone and Ondol zone. Using the this model, sensitivity analysis was carried out to refine the applicability of the model taking account of control conditions, constructions, air change and air flow network method and CFD analysis using the FLUENT. The air layer has enough temperature to use in heating zone. It is suggested that the simplicity of the model will allow building designers and mechanical engineers easily to implement scenario-based assessments of design options as well as control strategies. Later, we will simulate the real buildings and analyze the air distributions using the Fluent according to the various conditions.

THE GEOMETRIC ALBEDO OF (4179) TOUTATIS ESTIMATED FROM KMTNET DEEP-SOUTH OBSERVATIONS

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, SungWon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.71-82
    • /
    • 2019
  • We derive the geometric albedo of a near-Earth asteroid, (4179) Toutatis, to investigate its surface physical conditions. The asteroid has been studied rigorously not only via ground-based photometric, spectrometric, polarimetric, and radar observations but also via in situ observation by the Chinese Chang'e-2 space probe; however, its geometric albedo is not well understood. We conducted V-band photometric observations when the asteroid was at opposition in April 2018 using the three telescopes in the southern hemisphere that compose the Korea Microlensing Telescope Network (KMTNet). The observed time-variable cross section was corrected using the radar shape model. We find that Toutatis has a geometric albedo $p_V=0.185^{+0.045}_{-0.039}$, which is typical of S-type asteroids. We compare the geometric albedo with archival polarimetric data and further find that the polarimetric slope-albedo law provides a reliable estimate for the albedo of this S-type asteroid. The thermal infrared observation also produced similar results if the size of the asteroid is updated to match the results from Chang'e-2. We conjecture that the surface of Toutatis is covered with grains smaller than that of the near-Sun asteroids including (1566) Icarus and (3200) Phaethon.

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries (리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성)

  • Kim, Eunji;Lee, Albert S.;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.467-471
    • /
    • 2021
  • A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

P2P Based Telemedicine System Using Thermographic Camera (열화상 카메라를 포함한 P2P 방식의 원격진료 시스템)

  • Kim, Kyoung Min;Ryu, Jae Hyun;Hong, Sung Jun;Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.547-554
    • /
    • 2022
  • Recently, the field of telemedicine is growing rapidly due to the COVID-19 pandemic. However, the cost of telemedicine services is relatively high, since cloud computing, video conferencing, and cyber security should be considered. Therefore, in this paper, we design and implement a cost-effective P2P-based telemedicine system. It is implemented using the widely used the open source computing platform, Raspberry Pi, and P2P network that frees users from security problems such as the privacy leakage by the central server and DDoS attacks resulting from the server/client architecture and enables trustworthy identifying connection system using SSL protocol. Also it enables users to check the other party's status including body temperature in real time by installing a thermal imaging camera using Raspberry Pi. This allows several medical diagnoses that requires visual aids. The proposed telemedicine system will popularize telemedicine service and meet the ever-increasing demand for telemedicine.