• Title/Summary/Keyword: Thermal management of micro-electronic device

Search Result 3, Processing Time 0.023 seconds

Effect of Groove and Channel Size on the Thermal Transport Capacity of Micro-Capillary Pumped Loop for Mobile Electronic Device Cooling System (모바일 전자장비 냉각용 Micro-CPL내 형상크기변화에 따른 열성능 해석)

  • Kim, Byeong-Gi;Seo, Jeong-Se;Hwang, Geon;Mun, Seok-Hwan;Bae, Chan-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.329-334
    • /
    • 2005
  • As more high power wide band gap devices are being utilized. the thermal management issues associated with these devices need to be resolved. High power small devices dissipate excessive heat that must be cooled, but traditional cooling methods are insufficient to provide such a cooling means. This paper will evaluate a micro-capillary pumped loop thermal management system that is incorporated into the shim of the device, taking advantage of phase-change to increase the thermal conductivity of the system. The results of the modeling of the thermal management system will be discussed.

  • PDF

Effective Ionic Wind Generation of a Surface Discharge Type Ionic Air Pump (연면 방전형 이온풍 발생장치의 고효율 풍속발생)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1594-1598
    • /
    • 2008
  • The ionic air pump can be used towards the thermal management of micro-electronic devices, since the size of pump can be reduced to micrometer orders. In addition, an air pump allows air flow control and generation with low noise and no moving parts. These ideal characteristics of the pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities of the pumps. In this study a surface discharge type air pump, with a third electrode, has been investigated by focusing on elevating the wind velocity and efficiency. As a result, the enhanced ionic wind velocity could be obtained with the third electrode of the proposed air pump.

Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications (전기자동차용 고신뢰성 파워모듈 패키징 기술)

  • Yoon, Jeong-Won;Bang, Jung-Hwan;Ko, Yong-Ho;Yoo, Se-Hoon;Kim, Jun-Ki;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2014
  • The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.