• Title/Summary/Keyword: Thermal load distribution

Search Result 256, Processing Time 0.028 seconds

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

Separation Device of Deployable SAR Antenna for satellite (위성용 전개형 SAR 안테나 구속분리장치 )

  • Junwoo, Choi;Bohyun, Hwang;Byungkyu, Kim;Dong-yeon, Kim;Hyun-guk, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a non-explosive separation device for the deployable SAR antenna. This device utilises a Ni-Cr wire to restrain the antenna's belt mechanism, and joule-heating is used to minimise the impact of deployment. After the Ni-Cr wire has been cut, the device is deployed through the preload of the belt mechanism. Considering the design load(99g) and preload conditions, FEM analysis for AL7050 and Ti was performed. This analysis revealed that the amount of deformation for AL7050 was 0.256 mm with a margin of +0.09. In addition, by performing orbital thermal analysis, the temperature distribution for AL7050 in the worst cold case is confirmed as -50 to +2℃ and -10 to +90℃ in the worst hot case. This analysis confirmed that the separation device would remain stable even in the worst environment.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Fire Resistance Performance of High Strength Concrete with 4 Deformation Factors (4변형 인자에 의한 고강도콘크리트의 내화성능 평가)

  • Lee, Tae Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.112-120
    • /
    • 2012
  • A numerical model considering the internal vaporization and the creep effect, in the form of a analytical program, for tracing the behavior of high strength concrete(HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member, so that the prediction method of the moisture distribution inside the concrete members at fire is developed. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.

Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC (2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가)

  • Kim, Young Bae;Kim, Eun Ju;Yoon, Jonghyuk;Song, Hyoungwoon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.