• 제목/요약/키워드: Thermal insulation of clothing ensemble

검색결과 5건 처리시간 0.024초

10℃ 환경에서 기류가 겨울철 패딩 의류의 한 벌 보온력에 미치는 영향 -인체 착용 및 서멀마네킹 측정 비교- (Effects of Air Velocity on the Thermal Insulation of Winter-padded Clothing Ensembles at 10℃ Air Temperature -Comparison of Human Wear Trials with a Thermal Manikin-)

  • 백윤정;조가영;홍유진;이주영
    • 한국의류학회지
    • /
    • 제45권4호
    • /
    • pp.703-713
    • /
    • 2021
  • This study was to investigate the thermal insulation of clothing ensembles, including padded jackets with two different filling types. Thermal insulation of the ensemble was measured using a thermal manikin in four conditions (10℃, 30% RH and 20℃, 50% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1). Ten males participated at 10℃ and 30% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1. The results showed that the polyester ensemble was warmer than a goose down ensemble in 0.15 m·s-1 conditions and the goose down ensemble had greater thermal insulation than the polyester ensemble at an air velocity of 1.5 m·s-1. Thermal insulation was reduced 5-7% when temperature decreased 10℃ and reduced 40-50% when air velocity reached 1.5 m·s-1 for both ensembles. Thermal insulation of the ensemble in human trials decreased more than a thermal manikin at 10℃, 30% RH with an air velocity of 1.5 m·s-1. Lower temperatures and human trials were effective in identifying the properties of the thermal insulation by filling types even though there were restrictions on the general application because of two types of a clothing ensemble.

투습방수의류의 보온력 및 증발저항 평가와 관련 변인 (An Evaluation of Factors Influencing the Thermal Insulation and Evaporative Resistance of a Waterproof and Breathable Garment System)

  • 심현섭
    • 한국지역사회생활과학회지
    • /
    • 제25권4호
    • /
    • pp.549-556
    • /
    • 2014
  • This study evaluates the thermal insulation and evaporative resistance of a waterproof and breathable garment system and determines the factors influencing its thermal performance. The experimental garments were composed of underwear (shirts with 100% wool and 100% polyester) and outerwear (jackets and pants with a vapor-permeable membrane and a vapor-impermeable membrane). Data on clothing insulation in a dry condition ($10^{\circ}C$) and a wet condition ($10^{\circ}C$, 40% R.H.), evaporative resistance ($34^{\circ}C$, 40% R.H., and $10^{\circ}C$, 40% R.H.), and microclimate vapor pressure were collected and analyzed. According to the results, the thermal insulation of the experimental garment system ranged 1.27~1.40 in the dry condition and 0.40~0.89 in the wet condition at $10^{\circ}C$. Evaporative resistance ranged $41{\sim}525m^2Pa/W$. A decrease in thermal insulation by wetting underwear ranged 31~67% in the cold condition ($10^{\circ}C$). The breathability of the outer garment influenced the decrease in thermal insulation by wetting. The type of underwear fiber influenced the decrease in thermal insulation only when it was used with breathable outerwear. The vapor-permeable outerwear sample with polyester underwear (P_Perm) showed a larger decrease in insulation than that with wool (W_Perm). The evaporative resistance of the vapor-permeable ensemble showed no effect of underwear in the warm condition ($34^{\circ}C$), but polyester underwear showed lower evaporative resistance than wool in the cold condition ($10^{\circ}C$). The vapor-impermeable ensemble showed no difference in evaporative resistance between polyester underwear and wool underwear in both conditions. Future research should consider various clothing ensemble combinations and environmental conditions and evaluate wear comfort by using human subjects.

풍속변화에 따른 순모의류의 온열특성 (The effect of air velocity on the thermal resistance of wool ensembles)

  • 송민규;전병익
    • 한국의류학회지
    • /
    • 제22권5호
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF

한국 남성용 단일의복의 앙상블 조합시의 온열특성 변화에 관한 연구 - 무풍, 풍속환경하에서 - (A Study on Changes in Thermal Performances in Ensembles Made up of Single Garments Marketed for Korean Men - In Still and Dynamic Air Conditions -)

  • 송민규;권서윤;정현미
    • 한국의류산업학회지
    • /
    • 제14권4호
    • /
    • pp.660-668
    • /
    • 2012
  • The purpose of this study is to analyze the thermal characteristics of garments marketed for Korean males and to investigate the influence of each garment on ensemble, by measuring their insulation values(clo) using thermal manikins. The results are as follows. The total insulations(clo) of ensembles for S/S seasons are between 1.46 and 2.6 clo, with the mean of 2.12 clo. The insulation in the still air condition is 1.23 clo, which means a decrease of 42% compared to the total insulation of all the component garments. The insulation of ensembles for S/S seasons in the dynamic air condition decreased by 46.8%, compared to the still air condition. The total insulation(clo) of ensembles for F/W seasons is between 3.84 and 7.36 clo with the mean of 4.74 clo. The insulation in the still air condition is 2.26 clo, which means a decrease of 53.6% compared to the total insulation of all the component garments. The insulation of ensembles for F/W seasons in the dynamic air condition decreased by 36.2%, compared to the still air condition. As the clo value of each component garment gets higher, the insulation of ensembles gets higher. Especially, the insulation of ensembles was more influenced by outer wear than inner wear. The insulation of ensembles could be predicted by the insulation of outerwear better.

환경온도 -10℃에서 Clo값에 따른 인체 생리반응 및 주관적 감각 (Physiological Responses and Subjective Sensations by Clo Values at -10℃)

  • 김지연;송민규;김희은
    • 한국의류산업학회지
    • /
    • 제12권4호
    • /
    • pp.531-537
    • /
    • 2010
  • The purpose of this study was to review physiological responses and subjective sensations in the cold environment when the subjects wore ensemble with different clo values. Seven healthy male subjects participated in this experiment. This experiment was conducted in a climatic chamber with $-10^sC$ and 50%RH. Subjects wore five different kinds of ensemble[C1 (4.453 clo), C2 (3.452 clo), C3 (2.865 clo), C4 (2.387 clo), and C5 (2.280 clo)]. The experiment was composed of 20 min of rest period, 20min of treadmill exercise(6 km/h) period, 30 min of recovery period. We monitored skin temperature on 7 sites, clothing microclimate and subjective sensations. The clo value had positive correlations with mean skin temperature and clothing microclimate. The subjects feel more warm and humid as the clo value goes up. The subjects reported comfort when they wore C1 and C2 ensemble having over 3 clo value. However, they felt less comfortable during the exercise period since there was high humidity. Skin temperature on the extremities were more dramatically changed by the exercise rather than clo value. Thus it seems that in the cold environment, heat balance can mostly be controlled by the choice of clothing, and the clothes with high clo values can provide higher insulation. In conclusion, our findings suggest that it would be more effective to control clo value depending on the activity level for maintaining comfort level in the cold environment.