• Title/Summary/Keyword: Thermal insulation

Search Result 1,191, Processing Time 0.034 seconds

A Numerical Study for Calculation of Overall Heat Transfer Coefficient of Double Layers Covering and Insulation Material for Greenhouse (온실용 이중피복 및 보온재의 관류열전달계수 산정을 위한 수치적 연구)

  • Lee, Jong-Won;Kim, Dong-Keon;Lee, Hyun-Woo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.2
    • /
    • pp.41-47
    • /
    • 2015
  • This study calculated the overall heat transfer coefficient (U-value) of greenhouse covering materials with thermal screens using a simulation model and then estimated the validity of the calculated results by comparison with measured values. The U-value decreased gradually as the thickness of the air space between the double glazing increased, and then remained essentially constant at thicknesses exceeding 25 mm. The U-value also increased with the difference in temperature between the inside and outside of the hot box. The vigorous convective heat transfer between two plastic films caused unsteady heat flow and then created a nonlinear temperature distribution in the air space. The distance did not affect the U-value at distances of 50~200 mm between the plastic covering and thermal curtain. The numerical calculation results, with and without sky radiation, were in accord with the experimental results for a $30^{\circ}C$ temperature difference between the inside and outside of the hot box. In conclusion, a reliable U-value can be calculated for a temperature difference of $30^{\circ}C$ or more between the inside and outside of the hot box.

Assembly and Test of the In-cryostat Helium Line for KSTAR (KSTAR 저온용기 내부의 헬륨라인 설치 및 검사)

  • Bang, E.N.;Park, H.T.;Lee, Y.J.;Park, Y.M.;Choi, C.H.;Bak, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In-cryostat helium lines are under installation to transfer a cryogenic helium into cold components in KSTAR device. In KSTAR, three kinds of helium should be supplied into the cold components, which are supercritical helium Into superconduction(SC) magnet system, liquid helium into current lead system, and gas helium into thermal shields. Cryogenic helium lines consist of transfer lines outside the cryostat, in-cryostat helium lines, and electrical breaks. In-cryostat helium lines should be guaranteed of leak tightness for tong time operation at high internal helium pressure of 20 bar. We wrapped the helium line with multi-layer insulator(MLI) to reduce radiation heat and insulated the surface of the high potential part with prepreg tape. The electrical break was fabricated by brazing ceramic tube with stainless steel tube. To ensure the operation reliability at operation temperature, all the electrical break have been examined by the thermal cycle test at liquid nitrogen and by the hydraulic test at 30 bar. And additional surface insulation was prepared with prepreg tape to give structural safety. At present most of the in-cryostat helium lines have been installed and the final inspection test is progressing.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.

A Study on the Property Changes of Rigid Polyurethane Foams by Nucleating Effects of PFA and MWCNT (PFA 및 MWCNT의 기핵효과에 의한 경질 폴리우레탄 폼의 물성 변화에 대한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2945-2950
    • /
    • 2015
  • While perfluoroalkane (PFA), a liquid state nucleating agent for a rigid polyurethane foam (RPUF) to enhance the thermal insulation property, has the excellent nucleating characteristics, it is very expensive as well as environmentally harmful due to the fluoride compound. Many researches, therefore, have been performed to develop the alternative nucleating agents to replace PFA. In the present work, a multi-wall carbon nanotube (MWCNT) was used as a sloid state nucleating agent, and thereby the effects on the property changes of the RPUF were carried out. Average cell size decreased from 165.6 for base RPUF to $162.9{\mu}m$ and cell uniformity was also enhanced, showing the standard cell-size deviation of 45.6 and 35.2, respectively. While k-factor of base PUF was $0.01763kcal/m.hr.^{\circ}C$, that of the sample with 0.01 phr MWCNT showed 1.02% reduced value of $0.01745kcal/m.hr.^{\circ}C$. Though the compressive yield stress is nearly the same as $0.030{\times}105Pa$ for the both samples, initial modulus of the sample with 0.01 phr MWCNT was higher than that of base sample. it was considered as the results that small amount of MWCNT could play a sufficient role as the effective nucleating agent for RPUF, showing that an echo-friendly RPUF with reduced-cost could be fabricated, which has an enhanced thermal and mechanical properties.

Production of Foamed Glass by Using Hydrolysis of Waste Glass(III) - Heat Treatment for Stabilization and Scale-up Test - (폐유리의 가수분해 반응에 의한 발포유리의 제조(III) - 안정화 열처리공정 및 Scale-up Test -)

  • Lee, Chul-Tae;Um, Eui-Heum
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.73-81
    • /
    • 2006
  • Heat treatment condition for the stabilization of foamed glass block through the foaming process of the hydrolized waste glass was investigated and scale-up test for the manufacturing of foamed glass was also attempted for the actual foaming process. Proper heat treatment condition was quenching from the foaming temperature to $550{\sim}600^{\circ}C$ for stabilization, and then annealing from stabilization temperature to $200^{\circ}C$ and holding up at $200^{\circ}C$ for removal thermal stress, and then annealing to the room temperature with cooling speed of $0.3^{\circ}C/min$. Through this heat treatment conditions, foamed glass block with size of $250mm{\times}250mm{\times}90mm$ was produced successfully. The properties of this foamed glass block showed density of $0.28{\pm}0.06g/cm^3$, thermal conductivity of $0.048{\pm}0.005kcal/hm^{\circ}C$, moisture absorption of $0.5{\pm}0.09vol%$, linear expansion coefficient of $(8.6{\pm}0.2){\times}10^{-6}m/m^{\circ}C$($400^{\circ}C$), flexural strength of $15.0{\pm}0.6kg/cm^2$, and compression strength of $39.5{\pm}0.6kg/cm^2$.

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

Credibility of a Newly Developed Sham Moxibustion (피부 열전도 온도에 근거를 둔 거짓 뜸 개발 및 평가 연구)

  • Jang, Min-Ki;Yoon, Eun-Hye;Jung, Chan-Yung;Byun, Hyuk;Kim, Eun-Jung;Kim, Kyung-Ho;Kim, Kap-Sung;Lee, Seung-Deok
    • Journal of Acupuncture Research
    • /
    • v.27 no.1
    • /
    • pp.117-127
    • /
    • 2010
  • Background : To demonstrate the efficacy of moxibustion therapy, randomized controled trials are required. But, clinical trials of moxibustion had limitations due to the absence of a sham moxibustion model for an appropriate placebo. Objectives : To develop a new sham moxibustion model based on the thermal characteristics of commercial indirect moxibustion, especially temperature, and to evaluate whether it could be applied in clinical trials. Methods : By applying heat insulation, we created a sham moxibustion device that was indistinguishable from a real one with the naked eye. It also stimulated heat but had inert remedial value. A clinical trial was performed on subjects to test double blinding. The subjects were randomly assigned into two groups, a treatment group and a sham group. Acupoint Zusanli($ST_{36}$) was used in each group for 3 times. A sham acupuncture credibility questionnaire was modified into a moxibustion credibility questionnaire and was filled out after treatment. Results : No major difference was detected in the subjects' baseline data. Most subjects and practitioners could not distinguish the sham moxibustion device from the real one. But, subjects who had experience of moxibustion therapy more likely to distinguish the sham moxibustion device from the real one than subjects who didn't have experience of moxibustion therapy. The treatment group showed a significant difference in the VAS(Visual Analog Scale) for intensity of sensation during treatment than that of the sham group. Conclusions : The sham moxibustion device in this study is proved sufficient and credible to be applied in investigations of the effect of moxibustion. But it is more appropriate for the people who don't have experience of moxibustion therapy.

The Characteristics of Pt Micro Heater Using Aluminum Oxide as Medium Layer (알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 특성)

  • Chung, Gwiy-Sang;Noh, Sang-Soo;Choi, Young-Kyu;Kim, Jin-Han
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.400-406
    • /
    • 1997
  • The electrical and physical characteristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analyzed with increasing annealing temperature($400{\sim}800^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to $SiO_{2}$ and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin films was improved. But these properties of aluminum oxide and Pt thin films on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analyzed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater, active area was smaller size, Pt micro heater had better thermal characteristics. The temperature of Pt micro heater with active area, $200{\mu}m{\times}200{\mu}m$ was up to $400^{\circ}C$ with 1.5watts of the heating power.

  • PDF

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF