• Title/Summary/Keyword: Thermal index

Search Result 853, Processing Time 0.023 seconds

A Study on the Convergence of Renovation Measures for Urban Ecological Park Considering the Thermal Environment in Summer - With a Case of Gildong Ecological Park - (여름철 열환경을 고려한 도시생태공원 리노베이션 방안 융합 연구 - 길동생태공원을 사례로 -)

  • Kwon, Ki Uk
    • Korea Science and Art Forum
    • /
    • v.36
    • /
    • pp.11-22
    • /
    • 2018
  • This study recent changes in urban thermal environment caused by climate change generate diverse problems such as urban heat island effects, heat wave, and drought. Under this condition, with the increased perception and expectation of the quality of life, the urban citizens' desire for outdoor activities is increasing. This study conducted the thermal environment analysis focusing on the urban ecological park used by many urban citizens, and also suggested the renovation measures for urban ecological park considering the thermal environment. As the research site, the ecologically-favorable Gildong Ecological Pak with diverse space composition was selected. The measuring items were measured and analyzed by dividing them into thermal environment index and thermal comfort index. In the results of analysis in each type of park space, the forest zone showed the most favorable result. Based on such results, total three kinds of renovation measures for urban ecological park considering the thermal environment were suggested. Through this, the urban ecology park renovation plans were presented in three ways. The results of this study are meaningful in that it can be used as a base material for creating an ecological park considering the thermal environment.

Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석)

  • 김연태;김상철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

Development of Line Density Index for the Quantification of Oceanic Thermal Fronts (해양의 수온전선 정량화를 위한 선밀도 지수 개발)

  • Cho, Hyun-Woo;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.227-238
    • /
    • 2006
  • Line density index(LDI) was developed to quantify a densely isothermal line rate as standard index in the ocean environment. Theoretical background on the LDI development process restricting index range 0 to 100 was described. And validation test was done for the LDI application condition that total line length is not greater than 1/10 of unit area. NOAA SST(Sea Surface Temperature) data were used for the experimental application of LDI in the South Sea of Korea. Using GIS, $0.1^{\circ}C$ isothermal lines were linearized as vector data form SST raster data, and unit area were built as polygon data. For the LDI calculation, spatial overlapping(line in polygon) was implemented. To analyze the effect of unit area size for the LDI distribution, two cases of unit area size were designed and descriptive statistics was calculated including performing normality test. The results showed no change of LDI's essential characteristics such as mean and normality except for the range of value, variance and standard deviation. Accordingly, it was found that complex structure of thermal front and even smaller scale of front width than unit area size could influence on the LDI distribution. Also, correlation analysis performed between LDI and difference of temperature(${\Delta}T^{\circ}C$), and horizontal thermal gradient(${\Delta}T^{\circ}C/km$) on the front was obtained from linear regression model. This obtained value was compared with the results from previous researches. Newly developed LDI can be used to compare the thermal front regions changing spatio-temporally in the ocean environment using absolute index value. It is considered to be significant to analyze the relationship between thermal front and marine environment or front and marine organisms in a quantitative approach described in this study.

  • PDF

THERMAL AND NON-THERMAL RADIO CONTINUUM SOURCES IN THE W51 COMPLEX

  • MOON DAE-SIK;KOO BON-CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.81-102
    • /
    • 1994
  • We have decomposed the 11-cm radio continuum emission of the W51 complex into thermal and non-thermal components. The distribution of the thermal emission has been determined by analyzing HI, CO, and IRAS $60-{\mu}m$ data. We have found a good correlation between the 11-cm thermal continuum and the 60- 11m emissions, which is used to obtain the thermal and non-thermal 11-cm continuum maps of the W51 complex. Most of the thermal continuum is emanating from the compact H II regions and their low-density ionized envelopes in W51A and W51B. All the H II regions, except G49.1-0.4 in W51B, have associated molecular clumps. The thermal radio continuum fluxes of the compact H II regions are proportional to the CO fluxes of molecular clumps. This is consistent with the previous results that the total mass of stars in an H II region is proportional to the mass of the associated molecular clump. According to our result, there are three non-thermal continuum sources in W51: G49.4-0.4 in W51A, a weak source close to G49.2-0.3 in W51B, and the shell source W51C. The non-thermal flux of G49.5-0.4 at 11-cm is $\~28 Jy$, which is $\~25\%$ of its total 11-cm flux. The radio continuum spectrum between 0.15 and 300 GHz also suggests an excess emission over thermal free-free emission. We show that the excess emission can be described as a non-thermal emission with a spectral index ${\alpha}{\simeq}-1.0 (S_v{\propto}V^a)$ attenuated by thermal free-free absorptions at low-frequencies. The non-thermal source close to G49.2-0.3 is weak $(\~9 Jy)$. The nature of the source is not known and the reality of the non-thermal emission needs to be confirmed. The non~thermal shell source W51C has a 11-cm flux of $\~130Jy$ and a spectral index ${\alpha}{\simeq}-0.26$.

  • PDF

Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfc

  • Kim, Sung-Hee;Kim, Byung-Kyu;Lim, Ho
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.467-472
    • /
    • 2008
  • Rigid polyurethane foams (RPUFs) were fabricated from crude MDI (CMDI) and polypropylene glycols (PPGs) of various isocyanate indices with a physical blowing agent (HFC 365mfc). There was a tendency for the gel time to decrease and the tack-free time to increase with increasing index value. With increasing index value the foam density and compression strength decreased and the glass transition temperature, dimension stability and thermal insulation increased, while the cell size and closed cell content were virtually unchanged. Allophanate crosslinks and condensation reactions between the isocyanate groups, which are favored with a high index value, exerted significant effects on the properties of RPUFs.

The Validation Study of Shaping Comfortable Environments Based on the PMV Index Using Facial Skin Temperature (안면 피부온도를 활용한 PMV 지표 기반 쾌적환경 조성의 타당성 연구)

  • Kim, Boseong;Min, Yoon-Ki;Shin, Esther;Kim, Jin-Ho
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.311-318
    • /
    • 2013
  • This research examined the validity of whether the PMV index-based comfort- or uncomfort-indoor environments could be classified by the facial skin temperature, one of the physiological indicator for human. To do this, we distinguished between a comfort thermal environment and an uncomfort thermal environment using the PMV value, and then facial skin temperatures were measured in both environments. As a result, the facial skin temperature of occupants were different between the comfort- and uncomfort-indoor environments. It suggested that the facial skin temperature could be used in shaping the comfortable indoor environment based on the PMV index. While this result suggested the PMV index-based on comfort and uncomfort indoor environments could not be valid, because the facial skin temperature was lower in the uncomfort thermal environment than in the comfort thermal environment.

  • PDF

Refractive Indices and Densities of B2O3-Al2O3-SiO2 Glass System for Photosensitive Barrier Ribs of Plasma Display Panel (플라즈마 디스플레이 패널의 감광성 격벽을 위한 B2O3-Al2O3-SiO2 유리계의 굴절률과 밀도)

  • Won, Ju-Yeon;Hwang, Seong-Jin;Lee, Sang-Ho;Kim, Hyung-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.506-511
    • /
    • 2009
  • For the application of the photosensitive barrier ribs with optimal properties such as glass transition temperature, refractive index and coefficient thermal expansion, the boro-silicate glasses was studied. The glass transition temperature, coefficient thermal expansion, and refractive index of the glasses based on the $B_2O_3-Al_2O_3-Al_2O_3-SiO_2$ glass system have been investigated with the different ratio of BaO/$Na_2O$ and $B_2O_3/Na_2O$. Increasing the ratio of $B_2O_3/Na_2O$ was led to the increase of coefficient thermal expansion and the decrease of glass transition temperature. The increase of refractive index of boro-silicate glasses increased with the density of glasses. We suggest the empirical equation for the prediction of refractive index with the glass density, $n=0.123{\rho}+1.182$ with 0.042 as the standard deviation in the boro-silicate glass system. The aim of the present paper is to give a basic result of the thermal and optical properties for designing the composition of photosensitive barrier ribs in PDP.

Evaluation of Thermal Environments during the Heat Waves of Summer 2013 in Busan Metropolitan Area (2013년 부산지역 폭염사례일의 열쾌적성 평가)

  • Kim, Young-Jun;Kim, Hyunsu;Kim, Yoo-Keun;Kim, Jin-Kuk;Kim, Yeon-Mai
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1929-1941
    • /
    • 2014
  • Now a days, frequency of abnormally high temperatures like heat wave by global warming and climate change is increasing constantly and the number of patient with heat related illness are jumping rapidly. In this study, we chose the case day for the heat wave in Busan area(Busan and Yangsan), 2013 which it was the most hottest year during 21th century. And then, we analysed the weather condition using automatic synoptic observing system(ASOS) data. Also, four indices, heat index(HI), wet bulb globe temperature(WBGT), Man-ENvironment heat EXchange model(MENEX)'s results like Physiological subjective temperature(PST), Physiological strain(PhS), were calculated to evaluate the thermal comfort and stress quantitatively. However, thermal comfort was different as the each station and thermal comfort index during same time. Busan's thermal indices (HI: hot, WBGT: sweltering, PST: very hot, PhS: very hot) indicated relatively higher than Yansan's (HI: very hot, WBGT: sweltering, PST: very hot, PhS: sweltering). It shows that Busan near coast is relatively more comfortable than Yangsan located in inland.

A Physioclimatic Study on the Thermal Sensation in Korea (한국의 열감분포에 관한 생리 기후학적 연구 - 신유효온도를 중심으로 -)

  • 강철성
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.2
    • /
    • pp.129-140
    • /
    • 1997
  • The purpose of this paper is to analyze thermal sensation which is measured bv human physioclimatic reactions in Korea. Human physiological reactions to temperature and relative humidity are analyzed to produce a nomogram from which average human reactions to the climatic factors can be deduced. Thermal - indices for each regular stations in both South (1961-1990) and North Korea(1973-1994) are calculated based on monthly meteorological data. A generalized annual physioclimatic maps for each Annual Cumulative Thermal Index for the 52 stations are constructed to show how men tend to feel in various areas. Resuts of this study can be applied for evaluation of thermal environment in our daily activities, and for searching relevant sports training-sites.

  • PDF

Thermal Index for the Assessment of the Impacted Area by the Thermal Discharge from Nuclear Power Plant in Korea (원자력 발전소 온배수 피해역 산정을 위한 영향지수 시안)

  • Ro, Young-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • Thermal discharges from the nuclear power plants into neighboring Korean coastal waters have raised serious disputable arguments from the two parties of local fishermen and scientists involved since late 1970's. To meet the social demands and provide scientific and reasonable solutions, new set of standards have been established which will guide through measuring and processing the various variables and parameters in environmental and fishery impact assessment procedures for the thermal discharge from the nuclear power plants. These are made possible for the first time by the combined efforts by Korean Oceanography Society and Fishery Society. In this paper, Thermal Disharge Impact Index(TI) is proposed by the probability of the local temperatures exceeding critically to local fishery multiplied by the weighted sum of diverse environmental and ecological factors. The TI is essentially conceived to overcome the long-exising bad practices based on the particular excess temperature such as 1. The proposed TI based on the guideline principle proposed by the UNEP(2002) is expected to be practical, economic and self-adaptive. To prove the usefulness of the TI, it is highly recommended to conduct prototype experiments and exercises in a particular nuclear power plant site in the near future.