• Title/Summary/Keyword: Thermal image processing

Search Result 138, Processing Time 0.029 seconds

A Study on Heat Transfer Characteristics of Impinging Jet Using Infared Thermal Image Processing System (적외선열화상처리장치를 이용한 충돌제트의 전열특성에 관한 연구)

  • Kim, D.K.;Bae, S.T.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.711-716
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in electronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are nozzle exit angle $(30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ})$ and distance between nozzle and heat source is fixed 6d("d" is diameter of circular nozzle(10 mm). Reynolds number is 4500.

  • PDF

Flame Image Processing System for Combustion Condition Monitoring of Pulverized Coal Firing Boilers in Thermal Power Plant (발전용 미분탄 보일러의 연소 상태 감시를 위한 화염 영상 처리 시스템)

  • Baek, Woon-Bo;Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1119-1123
    • /
    • 2006
  • The flame image processing and analysis system has been investigated for the optimal pulverized coal firing of thermal power plant, especially for lower nitrogen oxide generation and more safe operation. We aimed at gaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the condition of combustion on the individual humors. Its feasibility test was undertaken with a pilot furnace for coal firing, through which the system was observed to be effective for the monitoring of the combustion condition of pulverized coal firing boilers.

Thermal Image Processing and Synthesis Technique Using Faster-RCNN (Faster-RCNN을 이용한 열화상 이미지 처리 및 합성 기법)

  • Shin, Ki-Chul;Lee, Jun-Su;Kim, Ju-Sik;Kim, Ju-Hyung;Kwon, Jang-woo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.30-38
    • /
    • 2021
  • In this paper, we propose a method for extracting thermal data from thermal image and improving detection of heating equipment using the data. The main goal is to read the data in bytes from the thermal image file to extract the thermal data and the real image, and to apply the composite image obtained by synthesizing the image and data to the deep learning model to improve the detection accuracy of the heating facility. Data of KHNP was used for evaluation data, and Faster-RCNN is used as a learning model to compare and evaluate deep learning detection performance according to each data group. The proposed method improved on average by 0.17 compared to the existing method in average precision evaluation.As a result, this study attempted to combine national data-based thermal image data and deep learning detection to improve effective data utilization.

The study of plant application at flame management system with flame monitoring for pulverized coal firing boiler of thermal power plant (발전용 미분탄 연소 보일러 화염감시장치의 현장적용에 관한 연구)

  • Baeg, Seung-Yeob;Kim, Seung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.535-537
    • /
    • 2004
  • The flame image processing and it's analysis system has been developed for optimal coal firing of thermal power plant, especially for reducing NOx and safe operations. We aimed at gaining the relationship between burner flame image, emissions of NOx and LOI(Loss on ignition) in furnace by utilizing the flame image processing methods. And the relationship determines quantitatively the conditions of combustion on the individual burners. The test was conducted on Samchonpo thermal power plant #4 unit(560MW) of KOSEP which has 24 burners. The system simplified the burner adjustment works in accordance with the real time trending of flame behavior like NOx profiles and unburned carbon profiles for individual burners. But, This kind of conventional method increases the cost as the number of burner are increased. Also there is a difficulty to measure exhausted gas of each burner because of measurement errors. This paper intends to propose the useful "Flame Monitoring System" that can find Low NOX and LOI at the upper furnace and to compare with the conventional System.

  • PDF

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

A Study on the efficiency test of Electric Discharge Machine Wire using Image processing (화상처리를 이용한 방전와이어의 성능평가에 대한 연구)

  • 배진한;이위로;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.117-122
    • /
    • 2002
  • Electrical discharge machining uses thermal energy from electrical discharge, while wire electrical discharge machining (WEDM) technology is widely used in conductive material machining. This paper proposes a method for evaluating the characteristics of wires in WEDM. In order to evaluate the wire processing performance, processing speed and roughness, straightness, corner processing have been assessed with precision experiment equipment and image processing including Laplacian filtering with various threshold levels.

  • PDF

Small Camera Module for TEC-less Uncooled Thermal Image (TEC-less 비냉각 열영상 검출기용 소형카메라 모듈 개발)

  • Kim, Jong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Thermal imaging is mainly used in military equipment required for night observation. In particular, technologies of uncooled thermal imaging detectors are being developed as applied to low-cost night observation system. Many system integrators require different specifications of the uncooled thermal imaging camera but their development time is short. In this approach, EOSYSTEM has developed a small size, TEC-less uncooled thermal imaging camera module with $32{\times}32mm$ size and low power consumption. Both domestic detector and import detector are applied to the EOSYSTEM's thermal imaging camera module. The camera module contains efficient infrared image processing algorithms including : Temperature compensation non-uniformity correction, Bad/Dead pixel replacement, Column noise removal, Contrast/Edge enhancement algorithms providing stable and low residual non-uniformity infrared image.

A Study on Heat Transfer Characteristics of Impinging Jet about Distance Ratio leer Thermal Control (전열제어를 위한 충돌제트의 거리비에 따른 열전달특성에 관한 연구)

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1237-1243
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in eletronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are distance between nozz1e and heat source. Reynolds number is 6000.

  • PDF

FPGA implementation using a CLAHE contrast enhancement technique in the termal equipment for real time processing

  • Jung, Jin-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose an approach for real time computation of rayleigh CLAHE using a FPGA. The contrast enhancement technique should be applied in thermal equipment having a low contrast image. And thermal equipment must be processed in real time. The CLAHE is an improved algorithm based Histogram Equalization, but the HW design is complex. A value greater than a given threshold in CLAHE should be equally distributed on the other histogram bin, this process requires iterations for the distribution. But implementation of this processing in the FPGA is constrained, so this section was implemented on the assumption of the histogram distribution or modified the operation process or implemented separately in the CPU. In this paper, we designed a distinct redistribution operation in two stages. So FPGA was designed for easy, this was designed to be distributed evenly without the assumptions and constraints. In addition, we have designed a CLAHE with the rayleigh distribution to the FPGA. The simulation shows that the proposed method provides a better image quality in the thermal image.

Flame Diagnosis using Image Processing Technique (영상처리 기술을 이용한 연소상태 진단)

  • Lee, Tae-Young;Kim, Song-Hwan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.196-202
    • /
    • 1999
  • Recent trend changes a criterion for evaluation of burner that environmental problem is raised as global issue. For efficient driving problem, the higher thermal efficiency and the lower oxygen in exhaust gas, burner is evaluated the better. For environmental problem, burner must satisfy $NO_{X}$ limit and CO limit. Consequently, 'good burner' means on whose thermal efficiency is high under the constraint of $NO_{X}$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop feedback control scheme whose output is the consistency of $NO_{X}$ and CO. This paper describes development of real time flame diagnosis technique that evaluate and diagnose combustion state such as consistency of components in exhaust gas, stability of flame in quantitative sense. This study focuses on wave length of luminescence from chemical reaction measurement of the luminescence via optical measuring apparatus and derive correlation with consistency of components in exhaust gas by image processing technique.

  • PDF