• Title/Summary/Keyword: Thermal hazard

Search Result 107, Processing Time 0.024 seconds

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Microbial Inactivation in Kimchi Saline Water Using Microwave Plasma Sterilization System (Microwave Plasma Sterilization System을 이용한 배추 절임수의 미생물 저감화)

  • Yu, Dong-Jin;Shin, Yoon-Ji;Kim, Hyun-Jin;Song, Hyeon-Jeong;Lee, Ji-Hye;Jang, Sung-Ae;Jeon, So-Jung;Hong, Soon-Taek;Kim, Sung-Jae;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.123-127
    • /
    • 2011
  • This study was conducted to decrease the microbial hazard in kimchi saline water with microwave plasma sterilization system and to evaluate the inactivation of foodborne pathogens by the microwave plasma sterilization system as a non-thermal treatment. Contamination of coliform, Escherichia coli, and yeasts and molds were detected in the used saline water, and the microbial populations increased as the saline water was reused repeatedly. The $D_{10}$-values of E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes by the microwave plasma sterilization system were 0.48, 0.52, and 0.45 cycle, respectively. In addition, the microbial populations of coliform, E. coli, Salmonella spp., total aerobic bacteria, and yeasts and molds in the used kimchi saline water were significantly decreased by treating the saline water using the microwave plasma sterilization system. Therefore, these results suggest that microwave plasma sterilization system can be useful in improving the microbial safety of the used saline water.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

Atmospheric Vertical Structure of Heavy Rainfall System during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간에 나타난 호우 시스템의 대기연직구조)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2012
  • The intensive observation (ProbeX-2010) with 6-hour launches of radiosonde was performed over Seoul metropolitan area (Dongducheon, Incheon Airport, and Yangpyeong) from 13 Aug. to 3 Sep. 2010. Five typical heavy rainfall patterns occurred consecutively which are squall line, stationary front, remote tropical cyclone (TC), tropical depression, and typhoon patterns. On 15 Aug. 03 KST, when squall line developed over Seoul metropolitan area, dry mid-level air was drawn over warm and moist low-level air, inducing strong convective instability. From 23 to 26 Aug and from 27 to 29 Aug. Rainfall event occurred influenced by stationary front and remote TC, respectively. During the stationary frontal rainy period, thermal instability was dominant in the beginning stage, but dynamic instability became strong in the latter stage. Especially, heavy rainfall occurred on 25 Aug. when southerly low level jet formed over the Yellow Sea. During the rainy period by the remote TC, thermal and dynamic instability sustained together. Especially, heavy rainfall event occurred on 29 Aug. when the tropical air with high equivalent potential temperature (>345 K) occupied the deep low-middle level. On 27 Aug. and 2 Sep. tropical depression and typhoon Kompasu affected Seoul metropolitan area, respectively. During these events, dynamic instability was very strong.

Emission characteristics of volatile organic compounds released from spray products (생활 스프레이 제품의 안전성 조사: 벤젠과 톨루엔 함량을 중심으로)

  • Jo, Hyo-Jae;Kim, Bo-Won;Kim, Yong-Hyun;Lee, Min-Hee;Jo, Sang-Hee;Kim, Ki-Hyun;Kim, Joon-Young;Park, Jun-Ho;Oh, Soo-Min;Lee, Seung-Hwan;Kim, Dong-Yeon
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Many kinds of liquid spray products are used in livelihood activities these days. Spray products can be distinguished by the target to be sprayed (like into the air or on human skin (body)). Because human can be exposed to volatile organic compounds (VOC) emitted from spray products, some considerations on safety or hazard of spray products should be needed. In this study, emission characteristics of VOCs were investigated against 10 types of liquid spray products (6 skin spray and 4 air spray products). The concentrations of benzene and toluene were determined by gas chromatography/mass spectrometry (GC/MS) equipped with a thermal desorber (TD). Their average concentrations from 6 skin spray products exhibited$ 5.64{\pm}1.95$ ($mean{\pm}S.D$) and $8.52{\pm}2.89$ ppb(w), respectively. In contrast, those of 4 air spray samples had $7.30{\pm}1.31$ and $7.19{\pm}1.78$ ppb(w), respectively. If liquid contents in spray samples are completely vaporized in one cubic meter (1 m3) after spraying for 10 seconds, their mean concentrations of skin spray products are $31.7{\pm}8.80$ (benzene) and $50.5{\pm}17.1{\mu}g/Sm^3$ (toluene). In contrast, those of air spray products are $24.0{\pm}4.30$ (benzene) and $23.6{\pm}5.83{\mu}g/Sm^3$ (toluene). The estimated concentration levels of benzene from two types of products (31.7 and $24.0{\mu}/Sm^3$) exceeded the Korean atmospheric environmental guideline ($5{\mu}g/Sm^3$). The results of this study thus suggest that some measures should be made to reduce or suppress the contents of VOC in spray products.

Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) (고출력 광섬유 레이저 기술의 현황 및 전망)

  • Kwon, Youngchul;Park, Kyoungyoon;Lee, Dongyeul;Chang, Hanbyul;Lee, Seungjong;Vazquez-Zuniga, Luis Alonso;Lee, Yong Soo;Kim, Dong Hwan;Kim, Hyun Tae;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2016
  • Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.

Effect of Reaction Factors on the Properties of Complex Oxide Powder Produced by Spray Roasting Process (분무배소법에 의해 생성되는 복합산화물 분말들의 특성에 미치는 반응인자들의 영향)

  • 유재근;이성수;박희범;안주삼;남용현;손진군
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.16-27
    • /
    • 2000
  • In order to produce raw material powder of advanced magnetic material by spray roasting process, newly modified spray roasting system was developed in this work. In this spray roasting system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, uniform temperature distribution inside reaction furnace made thermal decomposition process fully completed, and produced powder was effectively collected in cyclone and bag filter. This system equipped with apparatus which can purify hazard produced gas. In this study complex acid solution was prepared by dissolution of mill scale and ferro-Mn into the acid solution, and the pH of this complex acid solution was controlled about to 4. It was conformed that mill scale and ferro-Mn containing a lot of impurities such as $SiO_2$, P and Al could be used as raw material by reducing the impurities content of complex acid solution below 20 ppm. Complex oxide powder of Fe-Mn system was produced by spraying purified complex acid solution into the spray roaster through nozzle, and the variations of produced powder characters were studied by changing he reaction conditions such as reaction temperature, the injection velocity of solution and air, nozzle tip size and concentration of solution. The morphology of produced powder had spherical shape under the most experimental conditions, and concentration of solution. The morphology of produced powder has spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform, which tells the excellence of this spray roasting system. The grain size of most produced powder was below 100 nm. From the above results, it will be possible to produce ultra fine oxide powder from the chloride of Fe, Mn, Ni, Cu and rare earth by using this spray roasting system, and also to produce ultra fine pure metal powder by changing reaction atmosphere.

  • PDF