• Title/Summary/Keyword: Thermal fatigue tests

Search Result 88, Processing Time 0.026 seconds

A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures (알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

An Experimental Study on the Failure Characteristics of Sn-xAg-0.5Cu Lead-free Solder (Sn-xAg-0.5Cu 무연 솔더의 파손특성에 관한 실험적 연구)

  • Jeong, Jong-Seol;Lee, Yong-Sung;Shin, Ki-Hoon;Cheong, Seong-Kyun;Kim, Jong-Hyeong;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.449-454
    • /
    • 2009
  • This paper presents an experimental study on the failure characteristics of SnAgCu lead-free solder balls. To estimate the effect of Ag, three types of SnAgCu balls are first prepared by varying the weight percent of Ag(1.0, 3.0, 4.0 wt%) and then analyzed by reliability tests such as thermal shock, high speed ball shear, and drop tests. Thermal shock test reveals that the higher the weight percent of Ag is, the longer the fatigue lift becomes. To the contrary, high speed ball-shear test and drop test show that the shear strength and the fracture toughness of solder balls are inversely proportional to the weight percent of Ag, respectively, Reasons for these observations will be further investigated In the future work.

  • PDF

Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field (반복하중을 받는 압전 복합재료 작동기의 피로 특성)

  • Setiawan Hery;Goo Nam Seo;Yoon Kwang Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

A Study of Two-Mode Failure Model for Crystalline Si Photovoltaic Module (실리콘 태양전지 모듈의 two-mode failure 모델의 연구)

  • Choi, Ki Young;Oh, Won Wook;Kang, Byung Jun;Kim, Young Do;Tark, Sung Ju;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • To guarantee 20-25 years to the lifetime of the PV modules without failure, reliability test of the module is very important. Field-aged test of the outdoor environment is required. However, due to time constraints, accelerated testing is required to predict the lifetime of PV modules and find causes of failure. Failure is caused by many complex phenomena. In this study, we experimented two accelerated tests about corrosion and fatigue, respectively. First, temperature cycling test for fatigue were tested and Coffin-Manson equation was analyzed. Second, damp heat test for corrosion were tested and Eyring equation were analyzed. Finally, using two-mode failure model, we suggest a new lifetime model that analyze the phenomenon by combining two kinds of data.

  • PDF

An Experimental Study of Class Fiber Sheet-reinforced Asphalt Pavement (유리섬유 시트 보강 아스팔트포장 내구성 증진에 관한 실험적 연구)

  • 조삼덕;이대영;김진환;김남호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2004
  • The major distress types in the domestic asphalt pavement are fatigue cracking, reflection cracking, thermal cracking, and rutting. To decrease the pavement distress by reinforcing asphalt pavement with reinforcement interlayer in geosynthetics to the traditional pavement systems can improve these problems. This study conducted laboratory test with asphalt pavement reinforced by glass fiber sheet to fix systematically geosynthetic asphalt pavement system. Laboratory tests like wheel tracking test and crack resistance test are conducted to analyze the controlling effect of glass fiber sheet on cracking and rutting of asphalt pavement.

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

Mechanical Behavior Evaluation and Structural Analysis of 316 Stainless Steel at High Temperature (316 스테인리스강의 고온 물성 연구 및 구조 평가)

  • Rhim, Sung-Han;Lee, Kwang-Ju;Kim, Jin-Bae;Yang, In-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.181-184
    • /
    • 2008
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue behavior of 316 stainless steel was studied at wide temperature range $20^{\circ}C{\sim}750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreases when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude and plastic strain energy density was also investigated. With the experimental results, a structural analysis of turbine blades of 316 stainless steel were carried out.

  • PDF

Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process (하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가)

  • 손영준;이기현;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF

The performance evaluation of Stirling cryocooler for thermal imaging system (II) : Life test (열상장비용 스터링 극저온 냉동기 특성평가 (II) : 수명시험)

  • 홍용주;박성제;김효봉;김양훈;권영주
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.324-327
    • /
    • 2003
  • The needs for the cryocooler which has high reliability and long MTTF are increased in the military and commercial thermal imaging system The gas contamination wear, leakage of the working fluid, fatigue and etc. have the significant effects on the reliability and MTTF(Mean Time To Failure) or MTBF(Mean Time Between Failure) of the Stirling cryocooler. In the KIMM, the Stilting cryocooler with the linear compressor was released after the several performance tests were performed. This paper describe the experimental facility for the MTTF evaluation and some typical results of the Stilling cryocooler.

  • PDF

A study on the Thermal Fatigue Properties of Mg/Mg-Al18B4O33 Functionally Graded Material by Thermal Cycling Test and Finite Element Method (열반복 시험 및 유한요소해석을 통한 Mg/Mg-Al18B4O33 경사기능 재료의 열피로특성에 관한 연구)

  • Lee, Wookjin;Yang, Junseong;Choi, Kyewon;Park, Yongha;Park, Bonggyu;Park, Ikmin;Park, Yongho
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.538-544
    • /
    • 2008
  • MMCs were manufactured in two different forms. One was two-layered non FGM composite and the other was four-layered FGM composite. The matrix used in this study was AZ31 magnesium alloy and the reinforcement was $Al_{18}B_4O_{33}$. The composite materials contained reinforcement fibers with a volume fraction of 0, 15, 25 and 40%. Squeeze infiltration method was used for the fabrication of each block. The thermal properties of the FGM alloy and composite joints were studied by conducting thermal cycling tests. The numerical calculation (the finite elements method-FEM) results exhibited a good agreement with the experimental results. Thermal stresses induced by thermal cycling test were clearly reduced in the functionally graded materials.